абстрактным называют такое пространство которое
Словари
АБСТРАКТНЫЕ НАУКИ (этим. см. предыдущ. слово). Чисто-отвлеченные науки, напр., математические, в противоположность прикладным.
В первоначальном значении слово «пространство», как оно используется в геометрии, означало трехмерное пространство в отличие от двух измерений, изучением которых занимается планиметрия. Так как положение любой точки в пространстве можно указать, задав три ее координаты, естественно было рассмотреть сходные математические объекты, обладающие более чем тремя координатами. Следующий шаг привел к изучению объектов с бесконечным числом координат, т.е. к объектам, имеющим бесконечно большое число измерений. Пространство определяют как множество каких-либо объектов, называемых его точками. Точками таких пространств могут быть бесконечные последовательности чисел, функций или других объектов. В отличие от конкретных пространств обычной геометрии, такие пространства часто называют абстрактными. Одна из причин, по которой эти объекты называют пространствами, заключается в том, что эффективным средством их анализа является язык геометрии. Множество точек, определяющих пространство, должно удовлетворять аксиомам, опирающимся на достаточное число геометрических понятий, без которых нельзя было бы воспользоваться языком геометрии. Наиболее общие пространства, допускающие описание на языке геометрии, называются топологическими пространствами. Пространства, в которых над точками можно производить «сложение», как над векторами, называются линейными, или векторными, пространствами. (Изучением бесконечномерных пространств занимается функциональный анализ.) Метрическими называются такие пространства, в которых определено расстояние между точками. Частным случаем линейных метрических пространств являются банаховы пространства, получившие название в честь польского математика С. Банаха (1892-1945). Частным случаем банаховых пространств служат гильбертовы пространства, названные в честь немецкого математика Д. Гильберта (1862-1943). Гильбертово пространство является обобщением понятия евклидова пространства на бесконечномерный случай. В физике гильбертово пространство служит основой квантовой механики. Многие физические задачи можно решить, воспользовавшись фактами из теорий дифференциальных и интегральных уравнений, которые устанавливаются особенно просто, если использовать абстрактные пространства.
Словари
АБСТРАКТНЫЕ НАУКИ (этим. см. предыдущ. слово). Чисто-отвлеченные науки, напр., математические, в противоположность прикладным.
В первоначальном значении слово «пространство», как оно используется в геометрии, означало трехмерное пространство в отличие от двух измерений, изучением которых занимается планиметрия. Так как положение любой точки в пространстве можно указать, задав три ее координаты, естественно было рассмотреть сходные математические объекты, обладающие более чем тремя координатами. Следующий шаг привел к изучению объектов с бесконечным числом координат, т.е. к объектам, имеющим бесконечно большое число измерений. Пространство определяют как множество каких-либо объектов, называемых его точками. Точками таких пространств могут быть бесконечные последовательности чисел, функций или других объектов. В отличие от конкретных пространств обычной геометрии, такие пространства часто называют абстрактными. Одна из причин, по которой эти объекты называют пространствами, заключается в том, что эффективным средством их анализа является язык геометрии. Множество точек, определяющих пространство, должно удовлетворять аксиомам, опирающимся на достаточное число геометрических понятий, без которых нельзя было бы воспользоваться языком геометрии. Наиболее общие пространства, допускающие описание на языке геометрии, называются топологическими пространствами. Пространства, в которых над точками можно производить «сложение», как над векторами, называются линейными, или векторными, пространствами. (Изучением бесконечномерных пространств занимается функциональный анализ.) Метрическими называются такие пространства, в которых определено расстояние между точками. Частным случаем линейных метрических пространств являются банаховы пространства, получившие название в честь польского математика С. Банаха (1892-1945). Частным случаем банаховых пространств служат гильбертовы пространства, названные в честь немецкого математика Д. Гильберта (1862-1943). Гильбертово пространство является обобщением понятия евклидова пространства на бесконечномерный случай. В физике гильбертово пространство служит основой квантовой механики. Многие физические задачи можно решить, воспользовавшись фактами из теорий дифференциальных и интегральных уравнений, которые устанавливаются особенно просто, если использовать абстрактные пространства.
АБСТРАКТНЫЕ ПРОСТРАНСТВА
АБСТРАКТНЫЕ ПРОСТРАНСТВА. В первоначальном значении слово «пространство», как оно используется в геометрии, означало трехмерное пространство в отличие от двух измерений, изучением которых занимается планиметрия. Так как положение любой точки в пространстве можно указать, задав три ее координаты, естественно было рассмотреть сходные математические объекты, обладающие более чем тремя координатами. Следующий шаг привел к изучению объектов с бесконечным числом координат, т.е. к объектам, имеющим бесконечно большое число измерений. Пространство определяют как множество каких-либо объектов, называемых его точками. Точками таких пространств могут быть бесконечные последовательности чисел, функций или других объектов. В отличие от конкретных пространств обычной геометрии, такие пространства часто называют абстрактными. Одна из причин, по которой эти объекты называют пространствами, заключается в том, что эффективным средством их анализа является язык геометрии.
Множество точек, определяющих пространство, должно удовлетворять аксиомам, опирающимся на достаточное число геометрических понятий, без которых нельзя было бы воспользоваться языком геометрии. Наиболее общие пространства, допускающие описание на языке геометрии, называются топологическими пространствами. Пространства, в которых над точками можно производить «сложение», как над векторами, называются линейными, или векторными, пространствами. (Изучением бесконечномерных пространств занимается функциональный анализ.) Метрическими называются такие пространства, в которых определено расстояние между точками. Частным случаем линейных метрических пространств являются банаховы пространства, получившие название в честь польского математика С.Банаха (1892–1945). Частным случаем банаховых пространств служат гильбертовы пространства, названные в честь немецкого математика Д.Гильберта (1862–1943). Гильбертово пространство является обобщением понятия евклидова пространства на бесконечномерный случай. В физике гильбертово пространство служит основой квантовой механики. Многие физические задачи можно решить, воспользовавшись фактами из теорий дифференциальных и интегральных уравнений, которые устанавливаются особенно просто, если использовать абстрактные пространства.
АБСТРАКТНЫЕ ПРОСТРАНСТВА
Полезное
Смотреть что такое «АБСТРАКТНЫЕ ПРОСТРАНСТВА» в других словарях:
Пространство в физике — У этого термина существуют и другие значения, см. Пространство. В физике термин пространство понимают, в основном, в двух смыслах: 1) так называемое обычное пространство, называемое также физическим пространством[1] трехмерное пространство… … Википедия
МАТЕМАТИКА — Математику обычно определяют, перечисляя названия некоторых из ее традиционных разделов. Прежде всего, это арифметика, которая занимается изучением чисел, отношений между ними и правил действий над числами. Факты арифметики допускают различные… … Энциклопедия Кольера
Функциональный анализ (математ.) — Функциональный анализ, часть современной математики, главной задачей которой является изучение бесконечномерных пространств и их отображений. Наиболее изучены линейные пространства и линейные отображения. Для Ф. а. характерно сочетание методов… … Большая советская энциклопедия
Функциональный анализ — I Функциональный анализ часть современной математики, главной задачей которой является изучение бесконечномерных пространств и их отображений. Наиболее изучены линейные пространства и линейные отображения. Для Ф. а. характерно сочетание… … Большая советская энциклопедия
ЛОБАЧЕВСКОГО ГЕОМЕТРИЯ — геометрия, основанная на тех же основных посылках, что и евклидова геометрия, за исключением аксиомы о параллельных (см. Пятый постулат). В евклидовой геометрии согласно этой аксиоме на плоскости через точку Р, лежащую вне прямой А А, проходит… … Математическая энциклопедия
ВЕРОЯТНОСТЕЙ ТЕОРИЯ — занимается изучением событий, наступление которых достоверно неизвестно. Она позволяет судить о разумности ожидания наступления одних событий по сравнению с другими, хотя приписывание численных значений вероятностям событий часто бывает излишним… … Энциклопедия Кольера
ФУНКЦИЙ ТЕОРИЯ — раздел математики, занимающийся изучением свойств различных функций. Теория функций распадается на две области: теорию функций действительного переменного и теорию функций комплексного переменного, различие между которыми настолько велико, что… … Энциклопедия Кольера
ФУНКЦИЯ — термин, используемый в математике для обозначения такой зависимости между двумя величинами, при которой если одна величина задана, то другая может быть найдена. Обычно функция (с 17 в.) задается формулой, выражающей зависимую переменную через… … Энциклопедия Кольера
КРИВАЯ — (линия), след, оставленный движущейся точкой или телом. Обычно кривую представляют лишь как плавно изгибающуюся линию, вроде параболы или окружности. Но математическое понятие кривой охватывает и прямую, и фигуры, составленные из отрезков прямых … Энциклопедия Кольера
Абстрактные Пространства
В первоначальном значении слово «пространство», как оно используется в геометрии, означало трехмерное пространство в отличие от двух измерений, изучением которых занимается планиметрия. Так как положение любой точки в пространстве можно указать, задав три ее координаты, естественно было рассмотреть сходные математические объекты, обладающие более чем тремя координатами. Следующий шаг привел к изучению объектов с бесконечным числом координат, т.е. К объектам, имеющим бесконечно большое число измерений. Пространство определяют как множество каких-либо объектов, называемых его точками. Точками таких пространств могут быть бесконечные последовательности чисел, функций или других объектов. В отличие от конкретных пространств обычной геометрии, такие пространства часто называют абстрактными.
Одна из причин, по которой эти объекты называют пространствами, заключается в том, что эффективным средством их анализа является язык геометрии. Множество точек, определяющих пространство, должно удовлетворять аксиомам, опирающимся на достаточное число геометрических понятий, без которых нельзя было бы воспользоваться языком геометрии. Наиболее общие пространства, допускающие описание на языке геометрии, называются топологическими пространствами. Пространства, в которых над точками можно производить «сложение», как над векторами, называются линейными, или векторными, пространствами. (Изучением бесконечномерных пространств занимается функциональный анализ.) Метрическими называются такие пространства, в которых определено расстояние между точками.
Частным случаем линейных метрических пространств являются банаховы пространства, получившие название в честь польского математика С. Банаха (1892-1945). Частным случаем банаховых пространств служат гильбертовы пространства, названные в честь немецкого математика Д. Гильберта (1862-1943). Гильбертово пространство является обобщением понятия евклидова пространства на бесконечномерный случай. В физике гильбертово пространство служит основой квантовой механики. Многие физические задачи можно решить, воспользовавшись фактами из теорий дифференциальных и интегральных уравнений, которые устанавливаются особенно просто, если использовать абстрактные пространства..
Или гнойник, очаговое гнойное воспаление, которое характеризуется образованием полости, заполненной гноем, состоящим главным образом из белых кровяных клеток (лейкоцитов), сыворотки крови и остатков разрушенной ткани. Существует, однако, и менее распространенный вид абсцесса, т.н. Холодный абсцесс, при котором не возникает воспалительных реакций. Обычный, или гнойный, абсцесс может локализоваться в любой ткани тела, например в центре кости. В последнем случае его называют абсцессом Броди. Чаще в..
(573-634), первый халиф, преемник Мухаммеда. Родился в Мекке. Очень богатый торговец, он пользовался уважением как знаток законов и традиций своего народа, а также как толкователь снов. Мухаммед женился на его дочери Айше, и Абу Бакр сопровождал зятя во время бегства из Мекки в 622. Был преданным последователем пророка, который в последние дни своей жизни передал Абу Бакру руководство общей молитвой. После смерти Мухаммеда в 632 стихийно собравшиеся мусульмане избрали Абу Бакра халифом. Свою дея..
Дополнительный поиск Абстрактные Пространства