brushless motor что это значит
В чем разница между коллекторными и бесколлекторными моторами?
Вступление
Наверняка у каждого новичка, который впервые связал свою жизнь с электромоделями на радиоуправлении, после тщательного изучения начинки, появляется вопрос. Что такое коллекторный (Brushed) и бесколлекторный (Brushless) двигатель? Какой из них лучше поставить на свою радиоуправляемую электромодель?
Коллекторные моторы, которые так часто используются для приведения в движение электромоделей на радиоуправлении, имеют всего два исходящих питающих провода. Один из них «+» другой « — ». В свою очередь они подключаются к регулятору скорости вращения. Разобрав коллекторный мотор, вы всегда там найдете 2 магнита изогнутой формы, вал совместно с якорем, на который намотана медная нить (проволока), где по одну сторону вала стоит шестерня, а по другую сторону располагается коллектор, собранный из пластин, в составе которых чистая медь.
Принцип работы коллекторного мотора
Электрический ток (DC или direct current), поступая на обмотки якоря (в зависимости от их количества на каждую по очереди) создает в них электромагнитное поле, которое с одной стороны имеет южный полюс, а с другой стороны северный.
Многие знают, что, если взять два любых магнита и приставить их одноименными полюсами друг другу, то они не за что не сойдутся, а если приставить разноименными, то они прилипнут так, что не всегда возможно их разъединить.
Так вот, это электромагнитное поле, которое возникает в любой из обмоток якоря, взаимодействуя с каждым из полюсов магнитов статора, приводит в действие (вращение) сам якорь. Далее ток, через коллектор и щетки переходит к следующей обмотке и так последовательно, переходя от одной обмотки якоря к другой, вал электродвигателя совместно с якорем вращается, но лишь до тех пор, пока к нему подается напряжение.
В стандартном коллекторном моторе якорь имеет три полюса (три обмотки) – это сделано для того чтобы движок не «залипал» в одном положении.
Минусы коллекторных моторов
Сами по себе коллекторные моторы неплохо справляются со своей работой, но это лишь до того момента пока не возникает необходимость получить от них на выходе максимально высокие обороты. Все дело в тех самых щетках, о которых упоминалось выше. Так как они всегда находятся в плотном контакте с коллектором, то в результате высоких оборотов в месте их соприкосновения возникает трение, которое в дальнейшем вызовет скорый износ обоих и в последствии приведёт к потере эффективной мощности эл. двигателя. Это самый весомый минус таких моторов, который сводит на нет все его положительные качества.
Принцип работы бесколлекторного мотора
Здесь все наоборот, у моторов бесколлекторного типа отсутствуют как щетки так и коллектор. Магниты в них располагаются строго вокруг вала и выполняют функцию ротора. Обмотки, которые имеют уже несколько магнитных полюсов, размещаются вокруг него. На роторе бесколлектоных моторов устанавливается так называемый сенсор (датчик) который будет контролировать его положение и передавать эту информацию процессору который работает в купе с регулятором скорости вращения (обмен данными о положении ротора происходит более 100 раз в секунду). На выходе мы получаем более плавную работу самого мотора с максимальной отдачей.
Бесколлекторные моторы могут быть с датчиком (сенсором) и без него. Отсутствие датчика незначительно снижает эффективность работы мотора, поэтому их отсутствие вряд ли расстроит новичка, но зато, приятно удивит ценник. Отличить друг от друга их просто. У моторов с датчиком, помимо 3-х толстых проводов питания есть еще дополнительный шлейф из тонких, которые идут к регулятору скорости. Не стоит гнаться за моторами с датчиком как новичку так и любителю, т.к их потенциал оценит только профи, а остальные просто переплатят, причем значительно.
Плюсы бесколлекторных моторов
Почти нет изнашиваемых деталей. Почему «почти», потому что вал ротора устанавливается на подшипники, которые в свою очередь имеют свойство изнашиваться, но ресурс у них крайне велик, да и взаимозаменяемость их очень проста. Такие моторы очень надежны и эффективны. Устанавливается датчик контроля положения ротора. На коллекторных моторах работа щеток всегда сопровождается искрением, что впоследствии вызывает помехи в работе радиоаппаратуры. Так вот у бесколлектоных, как вы уже поняли, эти проблемы исключены. Нет трения, нет перегрева, что так же является существенным преимуществом. По сравнению с коллекторными моторами не требуют дополнительного обслуживания в процессе эксплуатации.
Минусы бесколлекторных моторов
У таких моторов минус только один, это цена. Но если посмотреть на это с другой стороны, и учесть тот факт что эксплуатация бесколлекторных моторов освобождает владельца сразу от таких заморочек как замена пружин, якоря, щеток, коллекторов, то вы с легкостью отдадите предпочтение в пользу последних.
Бесщеточный двигатель принцип работы
Как устроен бесщеточный двигатель
Работа бесщеточного электродвигателя основывается на электрических приводах, создающих магнитное вращающееся поле.
В настоящее время существует несколько типов устройств, имеющих различные характеристики.
С развитием технологий и использованием новых материалов, отличающихся высокой коэрцитивной силой и достаточным уровнем магнитного насыщения, стало возможным получение сильного магнитного поля и, как следствие, вентильных конструкций нового вида, в которых отсутствует обмотка на роторных элементах или стартере.
Обширное распространение переключателей полупроводникового типа с высокой мощностью и приемлемой стоимостью ускорило создание подобных конструкций, облегчило исполнение и избавило от множества сложностей с коммутацией.
Использование
Бесщеточный двигатель постоянного тока с постоянными магнитами встречается в основном в устройствах с мощностью в пределах 5 кВт.
В более мощной аппаратуре их применение нерационально.
Магниты в двигателях данного типа отличаются особой чувствительностью к высоким температурам и сильным полям.
Двигатели активно используются в электрических мотоциклах, автомобильных приводах благодаря отсутствию трения в коллекторе.
Описание и принцип работы
Бесщеточный (бесколлекторный) двигатель постоянного тока очень похож на двигатель постоянного тока с постоянными магнитами, но не имеет щеток для замены или износа из-за искрения коммутатора.
Поэтому в роторе выделяется мало тепла, что увеличивает срок службы двигателей.
Конструкция бесщеточного двигателя устраняет необходимость в щетках благодаря более сложной схеме привода, в которой магнитное поле ротора является постоянным магнитом, который всегда синхронизирован с полем статора, что позволяет более точно контролировать скорость и крутящий момент.
Управление бесщеточными двигателями постоянного тока очень отличается от обычного щеточного двигателя постоянного тока тем, что этот тип двигателя включает в себя некоторые средства для определения углового положения роторов (или магнитных полюсов), необходимые для получения сигналов обратной связи, необходимых для управления переключением полупроводников. Появление процессорной техники и силовых транзисторов позволило конструкторам отказаться от узла механической коммутации и изменить роль ротора и статора в электромоторе постоянного тока.
Принцип работы БДКП
В бесколлекторном электродвигателе роль механического коммутатора выполняет электронный преобразователь. Это позволяет осуществить «вывернутая наизнанку» схема БДКП — его обмотки расположены на статоре, что исключает необходимость в коллекторе.
Иными словами, основное принципиальное различие между классическим двигателем и БДКП в том, что вместо стационарных магнитов и вращающихся катушек последний состоит из неподвижных обмоток и вращающихся магнитов. Несмотря на то что сама коммутация в нём происходит похожим образом, её физическая реализация в бесщёточных приводах гораздо более сложна.
Как работает коллекторная машина
Чтобы произвести запуск коллекторного двигателя, потребуется подать напряжение на обмотку возбуждения, которая расположена непосредственно на якоре. При этом образуется постоянное магнитное поле, которое взаимодействует с магнитами на статоре, в результате чего проворачиваются якорь и коллектор, закрепленный на нём. При этом подается питание на следующую обмотку, происходит повтор цикла.
Как осуществляется управление
Электронный блок управления позволяет провести коммутацию обмоток привода. Для определения момента переключения при помощи драйвера отслеживается положение ротора по датчику Холла, установленном на приводе.
В том случае, если нет таких устройств, необходимо считывать обратное напряжение.
Оно генерируется в катушках статора, не подключенных на данный момент времени.
Контроллер — это аппаратно-программный комплекс, он позволяет отслеживать все изменения и максимально точно задавать порядок коммутации.
Трехфазные бесколлекторные электродвигатели
Очень много бесколлекторных электродвигателей для авиамоделей выполняется под питание постоянным током.
Но существуют и трехфазные экземпляры, в которых устанавливаются преобразователи.
Они позволяют из постоянного напряжения сделать трехфазные импульсы.
Работа происходит следующим образом:
И после этого происходит повтор всего цикла.
Преимущества использования
Изготовить своими руками бесколлекторный электродвигатель сложно, а реализовать микроконтроллерное управление практически невозможно. Поэтому лучше всего использовать готовые промышленные образцы.
Но обязательно учитывайте достоинства, которые получает привод при использовании бесколлекторных электродвигателей:
Как выбрать бесколлекторный мотор для квадрокоптера
Наши квадрокоптеры летают на бесколлеторных моторах постоянного тока, это специальные типы двигателей, у которых нет основных компонентов с повышенным износом.
Все бесколлекторные (безщеточные) двигатели состоят из 4 компонентов:
Статор. Статор это обмотка двигателя, состоящая из 3 фаз длинных тонких проводков, которые обматываются вокруг сердечника. Провода покрыты эмалью, чтобы предотвратить короткое замыкание при обмотке и работе. Если вы хорошо учили физику, то знаете, что ток, протекающий по проводу, создает магнитное поле. Когда провод обмотан вокруг чего-то, то магнитное поле увеличивается. Чем больше ток, тем больше сила магнитного поля и больше крутящий момент от вашего двигателя. Однако, большие токи сильно нагревают обмотку, особенно вот такие тонкие провода и защитная эмаль может оплавиться при сильном нагреве, тогда произойдет короткое замыкание и двигатель станет нерабочим.
Неодимовые магниты. Эти магниты из редкоземельных металлов генерируют фиксированное магнитное поле, они маленькие, но создают очень сильное магнитное поле. Они приклеены эпоксидной смолой или цианокрилатом к корпусу мотора.
Корпус двигателя защищает магниты и обмотку. Обычно он изготовлен из легкого металла, такого как алюминий. Более продвинутые двигатели имеют корпусы, которые сделаны как вентиляторы, т.е. при вращении нагоняют воздух на обмотку сердечника, чтобы охлаждать ее.
Вал мотора жестко прикреплен к верхней части. Это рабочий компонент мотора, который передает крутящий момент на пропеллеры.
Итак, как работает бесколлекторный мотор?
Слишком далеко заходить и углубляться не буду, просто основы — магниты и обмотка создают движущую силу благодаря взаимодействию и созданию магнитного поля между ними. Это происходит благодаря подаче постоянного тока на определенную обмотку (у нас 3 фазы, т.е. 3 отдельных провода на обмотке), ток подается и прекращает подаваться на определенные обмотки в короткий промежуток времени, тысячные доли секунды, заставляя крутиться верхнюю часть с магнитами. Этим процессом полностью управляет ESC-регуляторы, это мозг моторов, он решает, когда подавать ток, а когда нет и с какой частотой.
Как выбрать двигатель для квадрокоптера
Итак, теперь вы знаете основы работы и из чего он состоит, теперь узнаем, как выбрать мотор для дрона.
Размер двигателя
Вот общие размеры двигателей для квадрокоптеров:
RPM константа (kV)
Все моторые имеют рейтинг Kv. Этот рейтинг показывает то, насколько быстро будут крутиться ваши пропеллеры. Максимальное количество оборотов в минуту, которое сможет выдать ваш мотор, можно узнать, если умножить kV на напряжение аккумулятора. Так, если у вас двигатель 2300kV и батарея lipo 4s, то будет такая формула, так как у 4s lipo напряжение 14.8 вольт:
Но не стоит брать эту цифру как фактическое значение, которое будет развивать мотор, лучше использовать эту цифру как справочное число для ориентира — на что будет способен квадрокоптер на этих двигателях. Общая информация, какие пропеллеры нужно ставить на двигатели 2204 и 2205:
Обратите внимание, что это не жесткие правила, а лишь рекомендации, но если вы будете придерживаться их, то ваш дрон будет летать с наилучшими характеристиками.
Вес
Единственное, что нужно помнить про вес, это то, что каждый сэкономленный грамм нужно умножать на 4 (или больше, смотря какой дрон будете собирать). Тяжелые моторы обычно довольно мощные и компенсируют свой вес тягой.
Цена
Цена одно из важных значений, чем выше цена, тем качественнее компоненты и сборка, а значит и результаты по скоростям и маневренности. В среднем цены от 600 до 2 000 рублей.
Вал
Вал должен быть достаточно длинным, но не менее 13 мм в длину и 5мм в диаметре. 5мм это самый распростроненный диаметр у пропеллеров, в противном случае вам придется рассверливать или покупать новые проппы, так как они или не налезут или будут маленькие. А насчет длины — нужно не забывать, что пропеллеры закрепляются контргайками, а она должна полностью пройти вал по резьбе.
Разница между бесщеточным двигателем и шаговым двигателем
Я думаю, что понимаю принципы работы бесщеточного двигателя и шагового двигателя, но меня немного смущает разница. Является ли бесщеточный двигатель постоянного тока очень простым шаговым двигателем? При правильном управлении можно ли использовать бесщеточный двигатель постоянного тока в качестве шагового двигателя? Если нет, то чем они отличаются?
Для новичка в области электроники кто-то может выделить сходства и различия между шаговыми двигателями и бесщеточными двигателями постоянного тока?
Два в основном одинаковы, по сути. Тем не менее, они отличаются по назначению. Шаговый двигатель предназначен для работы, в частности, в ступенях. Мотор BLDC предназначен для обеспечения плавного движения.
Поскольку для управления движением используются шаговые двигатели, желательна повторяемость шагов. То есть, если вы начнете с одного шага, затем с другого, а затем с первого шага, он в идеале должен вернуться именно туда, где он был ранее. Различные вещи могут испортить это; провалы в подшипниках, трение и т. д. Двигатели BLDC оптимизированы для обеспечения плавного крутящего момента между ступенями, а не повторяемости.
С другой стороны, BLDC обычно работают с ротором, отстающим от статора, так что приложенный ток всегда генерирует максимальный крутящий момент, что и делал бы щеточный двигатель. Если требуется меньший крутящий момент, то ток уменьшается. Это более эффективно, но нужно знать положение нагрузки, чтобы знать, какой крутящий момент нужно приложить. Следовательно, шаговые двигатели, как правило, больше по размеру, чтобы обеспечить дополнительный нагрев при работе двигателя при максимальном токе все время.
Кроме того, в большинстве случаев люди ожидают, что степпер будет способен выполнять небольшие шаги для точного управления движением. Это означает большое количество магнитных полюсов. Шаговый двигатель обычно имеет сотни шагов на оборот. У BLDC обычно будет намного меньше. Например, недавно я играл с BLDC с жесткого диска, и у него было четыре «шага» на оборот.
Кроме того, шаговые двигатели обычно приводятся в движение двумя фазами, разнесенными на 90 градусов, в то время как BLDC обычно имеют три фазы, составляющие 120 градусов (хотя в обоих случаях есть исключения):
шаговый двигатель
BLDC
Несмотря на эти различия, степпер может работать как BLDC, или BLDC как степпер. Однако, учитывая противоречивые намерения проекта, результат, вероятно, будет менее чем оптимальным.
Выбор между коллекторными и бесщеточными BLDC-серводвигателями
Коллекторный и бесколлекторный двигатель
Чем отличаются коллекторные двигатели от бесколлекторных, главные преимущества и недостатки обоих типов.
Щеточные электродвигатели постоянного тока
Электродвигатели работают за счет сил Лоренца, которые возникают при прохождении электрического тока через обмотки, расположенные в магнитном поле. Воздействие этих сил заставляет ротор поворачиваться вокруг своей оси. Крутящий момент, создаваемый силой Лоренца, является векторным произведением, что означает, что когда полюса электромагнитов, образованных обмотками ротора, выровнены с противоположными полюсами магнитов статора, сила падает до нуля, а ротор прекращает вращение.
Графитовые щетки изготавливают из цельных кусков графита. Щетки из графита являются самосмазывающимися и достаточно прочными. Они подходят для больших двигателей, работающих на высокой скорости (выше 1000 об/мин). Недостатком графитовых щеток является то, что они со временем образовывают мусор, который может загрязнить коллектор и привести к сбоям в работе двигателя. Очень важно, чтобы такие щетки использовались при достаточно высоких скоростях для очистки от загрязнений.
Щетки из драгоценных металлов состоят из отдельных нитей, что делает их более хрупкими, чем щетки на основе графита. В тоже время щетки из драгоценных металлов обеспечивают лучшую производительность при более низком электрическом шуме и звуковом загрязнении. Они более компактны и эффективны в приложениях с низким рабочим циклом. Они также хорошо подходят для низковольтных систем, потому что падение напряжения между коллектором и щеткой имеет тенденцию быть низким. С другой стороны, они не обладают эффектом самосмазывания, что приводит к большему износу и необходимости использования внешних смазочных материалов.
Чтобы в полной мере понять чем отличается коллекторный двигатель от бесколлекторного, стоит взвесить все преимущества и недостатки обоих типов. Щеточные электродвигатели постоянного тока являются лучшим решением в области управления движением. Они экономичны и просты в использовании. Поскольку им не требуется встроенная электроника, они могут выдерживать экстремальные условия. При условии, что щетки выбраны правильно и своевременно обслуживаются, щеточные двигатели постоянного тока могут служить длительное время. Они хорошо подходят для применения в устройствах с умеренными и низкими скоростями.
Щеточные двигатели требуют квалифицированной эксплуатации. Прохождение определенной плотности тока, к примеру, приводит к выгоранию щеток. При избыточной скорости щетки могут слетать с коллектора. Для применения щеточных двигателей на высоте может потребоваться специальное обслуживание – как-то применение таких присадок, как дисульфид молибдена или карбонат лития.
Необходимость в коллекторе и щетках увеличивает размер двигателя. Щетки требуют регулярного обслуживания, поэтому двигатели должны находиться в доступном месте. Поскольку ротор с обмотками находится внутри (статора), щеточные двигатели могут рассеивать тепло только через воздушный зазор, что усложняет задачу теплообмена. Падение напряжения на щетках снижает эффективность щеточных двигателей.
Наконец, трение щеток о контакты коллектора дополнительно снижает эффективность и создает слышимый шум. Трение приводит к уменьшению крутящего момента на высоких скоростях. Кроме выше приведенных недостатков трение щеток о коллектор также может вызвать появление дуги и увеличение электромагнитных помех (EMI); а в худшем случае, могут генерироваться искры, что делает щеточные электродвигатели постоянного тока непригодными для использования во взрывоопасных средах.
Бесколлекторные двигатели постоянного тока (Вентильные двигатели)
Альтернативой являются бесколлекторные двигатели постоянного тока (BLDC) (Вентильные двигатели (ВД)) или двигатели с электронным коммутатором (ECM). Двигатели BLDC представляют собой синхронные двигатели с постоянными магнитами. Они могут работать как серводвигатели, а также как шаговые двигатели. Это определение также включает двигатели с переключением сопротивлением. С целью сравнения рассмотрим конструкцию двигателя BLDC, которая представляет собой коллекторный двигатель постоянного тока, вывернутый наизнанку. Постоянные магниты установлены на роторе, а статор состоит из ламинированной рамы с катушками. В результате ротор не нуждается в какой-либо проводке, и двигатель не нуждается в коллекторе и щетках.
Хотя двигатели BLDC классифицируются как двигатели постоянного тока и запитываются от источника постоянного тока, они имеют много общего с двигателями переменного тока. Чтобы поддерживать поворот ротора, обмотки статора должны запитываться последовательно; принципиально, это выглядит как импульсный источник тока, как правило, с синусоидальной формой сигнала, когда используется для сервомоторного управления. Для согласования распределения магнитного поля, генерируемое обмотками статора, с распределением магнитного поля ротора, в BLDC двигателях контролируеться угловое положение ротора, как правило, при помощи датчиков Холла. Эта обратная связь используется для управления переключением тока на обмотках.
Поскольку в двигателях BLDC не применяются щетки и коллекторы, они более компактны, чем коллекторные двигатели. Они обеспечивают более высокую производительность в одном типоразмере. Отсутствие щеток снижает необходимость обслуживания и позволяет ротору вращаться на более высоких скоростях. Отсутствие трения выравнивает кривую скорость/крутящий момент, устраняет вероятность искрения и снижает электромагнитное помехи (EMI). Перемещение теплогенерирующих обмоток наружу упрощает теплоотвод. Этот подход также снижает инерционность ротора, позволяя сервомоторам BLDC обеспечивать лучший динамический отклик. Отсутствие падения напряжения на щетках также повышает эффективность BLDC двигателей.
С другой стороны, двигатели BLDC сложнее, чем их коллекторные аналоги. Использование встроенной электроники значительно увеличивает их стоимость.
Как обсуждалось в начале этой статьи, выбор типа двигателя обуславливается требованиями, которые к нему выставляются. Проект с ограниченным бюджетом и с умеренными требованиями к характеристикам двигателя может отлично быть реализован с использованием коллекторного двигателя постоянного тока. Если для проекта более важными являются производительность и рабочий цикл BLDC двигатель может быть лучшим решением. Оригинальный производитель оборудования и конечные пользователи должны учитывать не только возможности двигателя, но и возможности своего персонала по инсталляции и обслуживанию оборудование. Эффективное техническое решение может быть принято только при обоснованном выборе оборудования.