Что такое сонаправленные векторы в геометрии определение 9 класс
Определение вектора
В статье пойдет речь о том, что такое вектор, что он из себя представляет в геометрическом смысле, введем вытекающие понятия.
Для начала дадим определение:
Вектор – это направленный отрезок прямой.
Исходя из определения, под вектором в геометрии отрезок на плоскости или в пространстве, который имеет направление, и это направление задается началом и концом.
Нулевой вектор
Под нулевым вектором 0 → будем понимать любую точку плоскости или пространства.
Из определения становится очевидным, что нулевой вектор может иметь любое направление на плоскости и в пространстве.
Длина вектора
Под длиной вектора A B → понимается число, большее либо равное 0, и равное длине отрезка АВ.
Понятия модуль вектора и длина вектора равносильны, потому что его обозначение совпадает со знаком модуля. Поэтому длину вектора также называют его модулем. Однако грамотнее использовать термин «длина вектора». Очевидно, что длина нулевого вектора принимает значение ноль.
Коллинеарность векторов
Два вектора лежащие на одной прямой или на параллельных прямых называются коллинеарными.
Два вектора не лежащие на одной прямой или на параллельных прямых называются неколлинеарными.
Следует запомнить, что Нулевой вектор всегда коллинеарен любому другому вектору, так как он может принимать любое направление.
Коллиниарные векторы в свою очередь тоже можно разделить на два класса: сонаправленные и противоположно направленные.
Направление векторов
Считается, что нулевой вектор является сонаправленым к любым другим векторам.
Равные и противоположные векторы
Равными называются сонаправленные вектора, у которых длины равны.
Противопожными называются противоположно направленные вектора, у которых их длины равны.
Введенные выше понятия позволяют нам рассматривать векторы без привязки к конкретным точкам. Иначе говоря, можно заменить вектор равным ему вектором, отложенным от любой точки.
Углы между векторами
Угол φ = ∠ A O B называется углом между векторами a → = O A → и b → = O B → .
Очевидно, что угол между сонаправленными векторами равен нулю градусам (или нулю радиан), так как сонаправленные векторы лежат на одной или на параллельных прямых и имеют одинаковое направление, а угол между противоположно направленными векторами равен 180 градусам (или π радиан), так как противоположно направленные векторы лежат на одной или на параллельных прямых, но имеют противоположные направления.
Перпендикулярными называются два вектора, угол между которыми равен 90 градусам (или π 2 радиан).
Вектор. Определение и основные понятия
Обозначение вектора
Направление вектора (от начала к концу) на рисунках отмечается стрелкой.
Длина вектора
Нулевой вектор
Длина нулевого вектора равна нулю.
Любая точка пространства также может рассматриваться как вектор. Такой вектор называется нулевым. Начало и конец нулевого вектора совпадают, и он не имеет какого-либо определенного направления.
Нулевым вектором называется вектор, у которого начальная и конечная точка совпадают.
Длина вектора на плоскости
Длина вектора в трехмерном пространстве
Длина вектора в n-мерном пространстве
Коллинеарные вектора
Вектора, параллельные одной прямой или лежащие на одной прямой называют коллинеарными векторами
Сонаправленные вектора
Противоположно направленные вектора
Компланарные вектора
Вектора, параллельные одной плоскости или лежащие на одной плоскости называют компланарными векторами.
Равные вектора
То есть, два вектора равны, если они коллинеарные, сонаправленые и имеют равные длины:
Если материал понравился Вам и оказался для Вас полезным, поделитесь им со своими друзьями!
О сайте
На нашем сайте вы найдете множество полезных калькуляторов, конвертеров, таблиц, а также справочных материалов по основным дисциплинам.
Самый простой способ сделать расчеты в сети — это использовать подходящие онлайн инструменты. Воспользуйтесь поиском, чтобы найти подходящий инструмент на нашем сайте.
calcsbox.com
На сайте используется технология LaTeX.
Поэтому для корректного отображения формул и выражений
пожалуйста дождитесь полной загрузки страницы.
© 2021 Все калькуляторы online
Копирование материалов запрещено
Вектор. Виды векторов.
Вектор — в самом элементарном случае это математический объект, который характеризуется
величиной и направлением.
В геометрии вектор — направленный отрезок прямой, то есть отрезок, для которого указано, какая
из его граничных точек является началом, а какая — концом.
У вектора есть длина и определенное направление. Графически вектора изображаются как
направленные отрезки прямой конкретной длины. Длина вектора – это и есть длина этого отрезка.
Для обозначения длины вектора используются две вертикальные линии по обоим сторонам: |AB|.
Как видно на рисунке, начало отрезка – это точка А, концом отрезка является
точка В, а непосредственно вектор обозначен через . У направления
вектора существенное значение, если переместить стрелку на другую
сторону отрезка, то получим вектор, но абсолютно другой. Понятие вектора
удобно сравнивать с движением физического тела: подумайте, ехать на
рыбалку и с рыбалки – разница огромная.
Понятия «больше» и «меньше» для векторов не имеет значения — так как направления их могут быть
разными. Сравнивают лишь длины векторов. Зато есть понятие равенства для векторов.
Виды векторов.
Единичным называется вектор, длина которого равна 1.
Отдельные точки плоскости, пространства удобно считать так называемым нулевым вектором.
У такого вектора конец и начало совпадают.
Нулевой вектор обычно обозначается как . Длина нулевого вектора, или его модуль равен нулю.
Коллинеарные вектора – вектора, которые параллельны одной прямой
или которые лежат на одной прямой.
Сонаправленные вектора. Два коллинеарных вектора a и b называются
сонаправленными векторами только тогда, когда их направления
соответствуют друг другу: a↑↑b
Противоположно направленные вектора – два коллинеарных вектора
a и b называются противоположно направленными векторами, только
когда они направлены в разные стороны: a↑↓b.
Компланарные вектора – это те вектора, которые параллельны одной
плоскости или те, которые лежат на общей плоскости.
В любое мгновение существует плоскость одновременно параллельную
двум любым векторам, поэтому два произвольных вектора являются
Равные вектора. Вектора a и b будут равными, если они будут лежать на
одной либо параллельных прямых и их направления и длины одинаковые.
То есть, такой вектор можно перенести параллельно ему в каждое место
Таким образом, два вектора равны, если они коллинеарные, сонаправленые
и имеют одинаковые длины:
Для координатного представления векторов огромное значение
оказывает понятие проекции вектора на ось (направленную
прямую).
проекциями точек начала и конца вектора на заданную прямую,
при этом проекции добавляется знак “+”, но когда направление
проекции соответственно направлению оси, иначе — знак “–”.
Проекция – это длина заданного вектора, умноженная на cos угла исходного вектора и оси; проекция
вектора на ось, которая перпендикулярна ему = 0.
Когда работают с векторами, зачастую вводят так называемую
декартову систему координат и уже в этой системе находят
координаты вектора по базисным векторам.
Разложение по базису геометрически можно показать проекцией
вектора на координатные оси. Когда известны координаты начала и
конца вектора, то координаты данного вектора получают вычитая
из координат конца вектора координат начала вектора.
За базис зачастую выбираются координатные орты, которые обозначаются как , соответственно
осям x, y, z. Исходя из этого, вектор можно записать в таком виде:
Каждое геометрическое свойство есть возможность записать в координатах, и далее исследование
из геометрического переходит в алгебраическое и на этом этапе в основном упрощается. Обратное,
кстати, неверно: не у любого соотношения в координатах есть геометрическое толкование, но только
те соотношения, которые выполняются в любой декартовой системе координат (инвариантные).
§ 1. Понятие вектора
Эта глава посвящена разработке векторного аппарата геометрии. С помощью векторов можно доказывать теоремы и решать геометрические задачи. Примеры такого применения векторов приведены в данной главе. Но изучение векторов полезно ещё и потому, что они широко используются в физике для описания различных физических величин, таких, например, как скорость, ускорение, сила.
Многие физические величины, например сила, перемещение материальной точки, скорость, характеризуются не только своим числовым значением, но и направлением в пространстве. Такие физические величины называются векторными величинами (или коротко векторами).
Рассмотрим пример. Пусть на тело действует сила в 8 Н. На рисунке силу изображают отрезком со стрелкой (рис. 240). Стрелка указывает направление силы, а длина отрезка соответствует в выбранном масштабе числовому значению силы. Так, на рисунке 240 сила в 1 Н изображена отрезком длиной 0,6 см, поэтому сила в 8 Н изображена отрезком длиной 4,8 см.
Отвлекаясь от конкретных свойств физических векторных величин, мы приходим к геометрическому понятию вектора.
Рассмотрим произвольный отрезок. Его концы называются также граничными точками отрезка.
На отрезке можно указать два направления: от одной граничной точки к другой и наоборот.
Чтобы выбрать одно из этих направлений, одну граничную точку отрезка назовём началом отрезка, а другую — концом отрезка и будем считать, что отрезок направлен от начала к концу.
Отрезок, для которого указано, какая из его граничных точек считается началом, а какая — концом, называется направленным отрезком или вектором. |
На рисунках вектор изображается отрезком со стрелкой, показывающей направление вектора. Векторы обозначают двумя заглавными латинскими буквами со стрелкой над ними, например . Первая буква обозначает начало вектора, вторая — конец (рис. 242).
На рисунке 243, а изображены векторы точки А, С, Е — начала этих векторов, а В, D, F — их концы. Векторы часто обозначают и одной строчной латинской буквой со стрелкой над ней:
(рис. 243, б).
Для дальнейшего целесообразно условиться, что любая точка плоскости также является вектором. В этом случае вектор называется нулевым. Начало нулевого вектора совпадает с его концом. На рисунке такой вектор изображается одной точкой. Если, например, точка, изображающая нулевой вектор, обозначена буквой М, то данный нулевой вектор можно обозначить так: (рис. 243, а). Нулевой вектор обозначается также символом
На рисунке 243 векторы
ненулевые, а вектор
нулевой.
Длиной или модулем ненулевого вектора называется длина отрезка АВ. Длина вектора
(вектора
) обозначается так:
. Длина нулевого вектора считается равной нулю:
Длины векторов, изображённых на рисунках 243, а и 243, 6, таковы:
(каждая клетка на рисунке 243 имеет сторону, равную единице измерения отрезков).
Равенство векторов
Прежде чем дать определение равных векторов, обратимся к примеру. Рассмотрим движение тела, при котором все его точки движутся с одной и той же скоростью и в одном и том же направлении.
Скорость каждой точки М тела является векторной величиной, поэтому её можно изобразить направленным отрезком, начало которого совпадает с точкой М (рис. 244). Так как все точки тела движутся с одной и той же скоростью, то все направленные отрезки, изображающие скорости этих точек, имеют одно и то же направление и длины их равны.
Этот пример подсказывает нам, как определить равенство векторов.
Предварительно введём понятие коллинеарных векторов.
Ненулевые векторы называются коллинеарными, если они лежат либо на одной прямой, либо на параллельных прямых; нулевой вектор считается коллинеарным любому вектору.
На рисунке 245 векторы (вектор
нулевой) коллинеарны, а векторы
а также
не коллинеарны.
Сонаправленность векторов и
обозначается следующим образом:
Если же векторы
и
противоположно направлены, то это обозначают так:
На рисунке 245 изображены как сонаправленные, так и противоположно направленные векторы:
Начало нулевого вектора совпадает с его концом, поэтому нулевой вектор не имеет какого-либо определённого направления. Иначе говоря, любое направление можно считать направлением нулевого вектора. Условимся считать, что нулевой вектор сонаправлен с любым вектором. Таким образом, на рисунке 245 и т. д.
Ненулевые коллинеарные векторы обладают свойствами, которые проиллюстрированы на рисунке 246, а — в.
Дадим теперь определение равных векторов.
Векторы называются равными, если они сонаправлены и их длины равны. |
Таким образом, векторы и
равны, если
. Равенство векторов
и
обозначается так:
Откладывание вектора от данной точки
Если точка А — начало вектора , то говорят, что вектор
отложен от точки А (рис. 247). Докажем следующее утверждение:
от любой точки М можно отложить вектор, равный данному вектору , и притом только один.
В самом деле, если — нулевой вектор, то искомым вектором является вектор
. Допустим, что вектор
ненулевой, а точки А и B — его начало и конец. Проведём через точку M прямую р, параллельную АВ (рис. 248; если M — точка прямой АВ, то в качестве прямой р возьмём саму прямую АВ). На прямой р отложим отрезки MN и MN’, равные отрезку АВ, и выберем из векторов
тот, который сонаправлен с вектором
(на рисунке 248 вектор
). Этот вектор и является искомым вектором, равным вектору
. Из построения следует, что такой вектор только один.
Равные векторы, отложенные от разных точек, часто обозначают одной и той же буквой. Так обозначены, например, равные векторы скорости различных точек на рисунке 244. Иногда про такие векторы говорят, что это один и тот же вектор, но отложенный от разных точек.
Практические задания
738. Отметьте точки А, В и С, не лежащие на одной прямой. Начертите все ненулевые векторы, начало и конец которых совпадают с какими-то двумя из этих точек. Выпишите все полученные векторы и укажите начало и конец каждого вектора.
739. Выбрав подходящий масштаб, начертите векторы, изображающие полёт самолёта сначала на 300 км на юг от города А до В, а потом на 500 км на восток от города В до С. Затем начертите вектор который изображает перемещение из начальной точки в конечную.
740. Начертите векторы так, чтобы:
а) были коллинеарны и
б) были коллинеарны,
были не
коллинеарны и
741. Начертите два неколлинеарных вектора и
. Изобразите несколько векторов: а) сонаправленных с вектором
; б) сонаправленных с вектором
; в) противоположно направленных вектору
; г) противоположно направленных вектору
.
742. Начертите два вектора: а) имеющие равные длины и неколинеарные; б) имеющие равные длины и сонаправленные; в) имеющие равные длины и противоположно направленные. В каком случае полученные векторы равны?
743. Начертите ненулевой вектор и отметьте на плоскости три точки А, В и С. Отложите от точек А, В и С векторы, равные
.
Задачи
744. Какие из следующих величин являются векторными: скорость, масса, сила, время, температура, длина, площадь, работа?
745. В прямоугольнике ABCD АВ = 3 см, ВС = 4 см, М — середина стороны АВ. Найдите длины векторов
746. Основание AD прямоугольной трапеции ABCD с прямым углом А равно 12 см, АВ = 5 см, ∠D = 45°. Найдите длины векторов
747. Выпишите пары коллинеарных векторов, которые определяются сторонами: а) параллелограмма MNPQ; б) трапеции ABCD с основаниями AD и ВС; в) треугольника FGH. Укажите среди них пары сонаправленных и противоположно направленных векторов.
748. Диагонали параллелограмма ABCD пересекаются в точке О. Равны ли векторы: а) ; б)
; в)
; г)
? Ответ обоснуйте.
749 Точки S и Т являются серединами боковых сторон MN и LK равнобедренной трапеции MNLK. Равны ли векторы: а) ; б)
; в)
; г)
; д)
.
750. Докажите, что если векторы равны, то середины отрезков AD и ВС совпадают. Докажите обратное утверждение: если середины отрезков AD и ВС совпадают, то
751. Определите вид четырёхугольника ABCD, если: и
а векторы
не коллинеарны.
752. Верно ли утверждение: а) если ; б) если
то
и
коллинеарны; в) если
то
г) если
то
д) если
Ответы к задачам
745.
746.
748. а) да; б) нет; в) да; г) нет.
749. а) нет; б) да; в) нет; г) нет; д) да.
751. а) ромб; б) трапеция.
752. а) да; б) да; в) нет; г) нет; д) да.
1 Нетрудно дать и точное определение этих понятий. Например, два ненулевых вектора, лежащие на параллельных прямых, называются сонаправленными (противоположно направленными), если их концы лежат по одну сторону (по разные стороны) от прямой, проходящей через начала. Как сформулировать аналогичное определение для ненулевых векторов, лежащих на одной прямой?