g703 интерфейс что такое
3.6 Протокол G.703
Семенов Ю.А. (ИТЭФ-МФТИ)
Yu. Semenov (ITEP-MIPT)
(ITU-T Recommendation G.703.Physical/Electrical Characteristics of Hierarchical Digital Interfaces. 1972 last amended in 1991).
Интерфейс G.703 (ITU-T Recommendation G.703.Physical/Electrical Characteristics of Hierarchical Digital Interfaces. 1972 last amended in 1991) был разработан в 1972 году и базируется на стандартах G.702, G.704 и I.430 и обслуживает сети с иерархией PDH и SDH. Первоначально он разрабатывался для систем с импульсно-кодовой модуляцией. G.703 может работать на скоростях передачи данных 64 Кбит/с, 1544, 6312, 32064 и 44736 Кбит/с (PDH, американская версия), 2048, 8448, 34368, 139264 Кбит/с (европейская версия). Предусматривается работа и при 155,52 Мбит/с. В качестве физического канала передачи может использоваться скрученная пара (Z=100-120 Ом) или коаксиальный кабель (75 Ом), амплитуда импульса 1-3В.
При скорости 64 Кбит/с через интерфейс передается три типа сигналов: информационный (64 Кбит/с) и два синхронизирующих тактовых 64 Кбит/с и 8 Кбит/с. Стандарт предусматривает 3 вида взаимодействия терминального оборудования: однонаправленный (codirectional; рис. 3.6.1), разнонаправленный (рис. 3.6.2) и с центральным тактовым генератором (рис. 3.6.3).
Рис. 3.6.1. Однонаправленная передача информации и тактовых сигналов
Рис. 3.6.2. Разнонаправленная передача информации и тактового сигнала для 64 Кбит/с
Рис. 3.6.3. Интерфейс с центральным тактовым генератором для 64 кбит/с
Частота синхронизирующих сигналов может быть меньше скорости передачи данных в 2, 4 и 8 раз. Тип кода зависит от скорости передачи и типа аппаратного интерфейса. Характеристики основных разновидностей интерфейса G.703 приведены в таблице 3.6.1.
Скорость [кбит/с] | 64 | 1544 | 6312 | 32064 | 44736 | 2048 | 8448 | 34368 | 139264 | 155520 |
Тип кода | AMI | AMI B8ZS | B6ZS | AMI | B3ZS | HDB3 | HDB3 | HDB3 | CMI | CMI |
Амплитуда, В | 1,0 | 3,0 | 1,0 | 1,0 | 1,0 | 2,37 3,0 | 2,37 | 1,0 | ±0,55 | ±0,55 |
Ширина импульса, нс | 15000 | 323,5 | 79 | 15,6 | 11,2 | 244 | 59,0 | 14,55 | 3,59 | 3,2 |
Кодировка относится лишь к случаю проводных каналов.
Цифровые сети. Рекомендации G.703, G.704
Первые цифровые сети были разработаны для того, чтобы обеспечить передачу телефонного трафика по высокоскоростным магистральным каналам. Преимущества передачи голосового трафика в цифровом виде оцифрованный сигнал одинаково хорошо распространяется на любые, сколь угодно большие расстояния. Для передачи по цифровым сетям аналоговый сигнал последовательно преобразуется сначала в информационный код, а затем, в линейный код.
Мгновенному значению амплитуды аналогового входного сигнала ставится в соответствие одна из 256 возможных кодировок. Таким образом, оцифрованный голосовой сигнал передается в виде 8-ми разрядного кода с частотой повторения 8 кГц. Шум квантования представляет собой изменяющуюся в времени разницу между исходным и оцифрованным сигналом.
Для того, чтобы ослабить влияние этого шума на слабые аналоговые сигналы преобразование сигнала в код выполняют по нелинейному закону: меньшим значениям входного сигнала ставится в соответствие большее изменение выходного кода, и наоборот. Компрессор устанавливается на стороне передатчика и экспандер — на стороне приемника.
Тип линейного кода обеспечивает формирование требуемого спектра передаваемого сигнала, а также условий по обеспечению синхронизации внутренних генераторов тактовой частоты приемника и передатчика.
Подавление 8-ми последовательных двоичных нулей — Binary 8 Zeros Suppression Специально сформированная последовательность полжительных и отрицательных импульсов образ нарушает правило чередования полярности bipolar violation (BPV), и следовательно, может быть распознан на приемном конце и заменен на 8 нулей.
Для линейного кодирования в европейских цифровых каналах используется метод HDB3 (High Density Bipolar 3, биполярное кодирование с высокой плотностью), комбинация из четырёх последовательных нулей во входном сигнале заменяется группой B00V, где B — компенсирующий бит, а V — бит, который нарушает правило чередования фазы. вставляемые биты поддерживают баланс импульсов положительной и отрицательной полярности.
Рекомендация G.703 устанавливает номиналы скоростей передачи данных и для каждой из этих скоростей иерархии устанавливает требования к электрическим параметрам сигналов.
«Плезио» означает «почти» передачу данных в данном случае нельзя назвать ни синхронной, ни асинхронной, поскольку синхронизация приемника и передатчика производится только в отдельные моменты времени.
В скобках — номер соответствующего пункта рекомендации G.703
Рекомендация G.703 также определяет дробные (fractional) скорости передачи данных вида:
F = n * 64 Кбит/сек, где n = 2…31 для Е1 и n = 2…23 для Т1.
Для некоторых из иерархии скоростей передачи данных (в частности, для скоростей Е1 и Т1) могут использоваться два типа физической среды — витая пара или коаксиальный кабель. Интерфейсы G.703, которые используют коаксиальный кабель с волновым сопротивлением 75 Ом в качестве физической среды передачи, называются небалансированными (unbalanced). Интерфейсы G.703, которые используют витую пару проводов с волновым сопротивлением 120(100) Ом в качестве физической среды передачи, называются сбалансированными (balanced).
Информационный поток образуют кадры (frames) и мультикадры (multi frames). Кадр образуют 8-ми битовые канальные интервалы и управляющие символы. Каждый канальный интервал обеспечивает передачу оцифрованного голоса или данных со скоростью 8 бит * 8 кГц = 64 Кбит/сек.
Кадр — битовая последовательность фиксированной длины, которая состоит из нескольких канальных интервалов (тайм слотов) и управляющих символов и передается с частотой 8 КГц.
Мультикадр — битовая последовательность фиксированной длины, состоящая из нескольких кадров которые передаются с частотой 8 КГц.
Кадр потока Т1 состоит из 24 канальных интервалов и одного управляющего символа, что составляет 24*8+1 = 193 бита * 8000 Гц = 1544 Кбит/сек. Кадр потока Е1 может состоять из 30 информационных и двух управляющих канальных интервалов, что составляет 32 * 8 = 256 бит * 8000 Гц = 2048 Кбит/сек.
Номер 1 соответствует управляющему биту кадра, который имеет название «F-бит», и используется для разделения кадров, динамического определения производительности и обслуживания канала передачи данных. Существует два варианта организации мультикадров в потоке Т1 12-ти кадровый и 24-х кадровый. Поле управляющего символа используется для организации служебного информационного канала передачи данных со скоростью 8 Кбит/сек.
Структура 24-х кадрового мультикадра
Канал с пропускной способностью 4 Кбит/сек используется для передачи диагностической последовательности DL (diagnostic link), два канала по 2 Кбит/сек используются для передачи сигнала обрамления мультикадра FAS (frame alignment signal) (001011) и 6-ти разрядной контрольной суммы CRC. Сигнал FAS используется для обеспечения мультикадровой синхронизации приемника и передатчика. Для передачи сигнальной информации используются биты №8 всех тайм слотовкаждого шестого кадра мультикадра (6,12,18,24).
Структура 12-ти кадрового мультикадра
Технологический канал используется для передачи двух последовательностей FAS (010101) и S-бит. Последовательность S имеет две функции: она может использоваться для разделения мультикадров или для передачи информации об аварии на удаленном абоненте.
Биты кадра Т2 нумеруются от 1 до 789. Частота повторения кадров Т2 составляет 8000 Гц. В состав кадр потока Т2 входят четыре потока Т1 + 5 управляющих битов и два управляющих канала 8 Кбит/сек для передачи сигнальной информации 789 = ( 24 * 4 = 96 ) * 8 + 16 + 5.
Биты TS0 используются для передачи управляющих последовательностей. Биты TS16 используются для передачи битов канальной сигнализации(ABCD). В четных кадрах значение первого бита TS0 используется для передачи CRC-4 субмультикадра. Остальные 7 бит этого тайм слота используются для передачи последовательности обрамления кадра (0011011).Первый бит TS0 нечетных кадров используется для передачи сигнала обрамления мультикадра (001011) и сигналов Е нарушения контрольной суммы. Третий используется для передачи сигнала «удаленная тревога».
В тайм слотах TS16 передаются биты сигнализации ABCD для каналов с 1 по 15 и с 17 по 31.
G703 интерфейс что такое
Рекомендация МСЭ-Т G.703 [1] относится к числу наиболее известных и часто используемых, так как в ней даны определения интерфейсов для передачи сигналов, составляющих основу современных цифровых систем связи. Тем не менее в процессе экспертизы различных документов и при контактах со специалистами во время консультаций или обучения автору неоднократно приходилось сталкиваться с незнанием или некоторым недопониманием отдельных положений этой рекомендации. В какой-то мере к этому могли привести ошибки и неточности, имеющиеся в посвященной данной теме статье [2] и соответствующем разделе книги [3]. Поэтому стоит еще раз вернуться к этой теме и внести необходимые уточнения.
Р екомендация G.703 включает 12 разделов, в каждом из которых описан определенный интерфейс. В связи с этим любая ссылка на интерфейс G.703 без указания конкретного интерфейса лишена смысла. Следует обязательно привести скорость передачи или сослаться на соответствующий раздел документа — например, так: “Интерфейс G.703 со скоростью 2048 кбит/с”1 или, что то же самое, “Интерфейс G.703/6”.
В табл. 1 указано соответствие между разделами Рекомендации G.703 и иерархическими интерфейсами и выделены скорости передачи, используемые на сетях нашей страны. Скорости передачи для американской, европейской и японской плезиохронных цифровых иерархий (PDH) указаны в Рекомендации G.702 [4].
В разделе 1 (скорость 64 кбит/с) определены три типа интерфейсов: сонаправленный, противонаправленный и с центральным генератором. Они различаются по способу передачи сигнала синхронизации [2, 3].
Помимо интерфейсов PDH, в этом документе описан и электрический интерфейс для 1-го уровня (STM-1) cинхронной цифровой иерархии (SDH), который используется для внутристанционных связей. Более высокие уровни SDH (STM-4, 16, 64) имеют только оптические интерфейсы.
Внимательный читатель заметит отсутствие в табл. 1 раздела 10, что не случайно, поскольку в нем дано определение интерфейса, который, строго говоря, не соответствует названию рекомендации (“Иерархические цифровые интерфейсы”). Этот раздел относится к сигналам, предназначенным не для передачи полезной информации, а исключительно для синхронизации. Однако в раздел 10 рекомендации включено определение специального синхронизационного интерфейса,
поскольку, во-первых, система синхронизации необходима для нормальной работы всех цифровых сетей связи, а во-вторых, для этого могут использоваться информационные сигналы со скоростями 2048 и 155 520 кбит/с, специфицированные в этом документе).
Характеристики интерфейсов
Прежде всего следует иметь в виду, что в Рекомендации G.703 даны только физические и электрические характеристики интерфейсов. Поэтому фраза: “Рекомендация G.703 вообще не предусматривает необходимые для нормальной маршрутизации заголовки” [3, с. 24] — лишена смысла, поскольку функциональные характеристики, в том числе и служебная информация (“заголовки”), имеются в других рекомендациях (в частности, G.704 [5] для 1-го и 2-го уровней PDH).
Далее, никаких общих характеристик для разных интерфейсов в этом документе нет. Основными характеристиками каждого отдельного интерфейса являются:
· скорость передачи и ее максимально допустимое отклонение,
· среда передачи (симметричная или коаксиальная пара) и значение характеристического сопротивления,
· форма и параметры сигнала (напряжение, длительность импульса и т. п.).
Для некоторых интерфейсов установлены дополнительные характеристики: максимальное фазовое дрожание (джиттер), уровень сигнала, затухание и др.
Не останавливаясь на всех важных для разработчиков аппаратуры параметрах (за ними следует обращаться непосредственно к тексту рекомендации), рассмотрим наиболее существенные из них.
Важным параметром, о котором ничего не сказано в [2, 3], является максимально допустимое отклонение скорости передачи от номинальной. Его принято измерять в миллионных долях (английская аббревиатура — ppm — parts per million). Значения его для всех иерархических цифровых интерфейсов приведены в табл. 2. Относительные величины легко пересчитать в абсолютные. Например, для скорости 64 кбит/с величину абсолютного отклонения вычисляют следующим образом: 64 кбит/с • 100 • 10–6 = 6,4 кбит/с.
Параметры импульсов (амплитуда, длительность, скорость нарастания) и допуски на них определяются графически в виде специальных масок, приведенных в рекомендации.
Номинальная форма импульса всех используемых в нашей стране иерархических цифровых интерфейсов прямоугольная.
Интерфейс синхронизации
Общие принципы построения системы тактовой сетевой синхронизации на цифровых сетях связи России изложены в РТМ [6]. В этом документе учтены как требования соответствующих рекомендаций МСЭ-Т, так и особенности построения сетей связи в нашей стране. В том числе в нем упоминается сигнал синхронизации с частотой 2048 кГц, интерфейс которого описан в разделе 10 Рекомендации G.703. Этот сигнал применяют в случае необходимости внешней синхронизации аппаратуры, а конкретно — в приведенных ниже ситуациях:
· При использовании специальной аппаратуры синхронизации — первичных эталонных генераторов (ПЭГ) и ведомых задающих генераторов (ВЗГ). Каждое из этих устройств должно иметь не менее 16 выходов с интерфейсом G.703/10, а ВЗГ — еще и входы с этим же интерфейсом.
· При использовании систем SDH. Дело в том, что вследствие применения в этих системах механизма смещения указателей в компонентных сигналах возникает джиттер значительно большей величины, чем в системах PDH, содержащий к тому же трудно поддающиеся фильтрации интенсивные низкочастотные составляющие. По этой же причине сигнал 2048 кбит/с, прошедший через системы SDH, не рекомендуется использовать для синхронизации2. Кроме того, прошедший определенное число сетевых элементов SDH синхросигнал, выделяемый из линейного сигнала STM-N, должен подаваться на ВЗГ для фильтрации джиттера. Поэтому все оборудование SDH обязательно имеет выходы для выдачи синхросигнала другому оборудованию и входы для получения синхросигнала, например от ПЭГ или ВЗГ, с интерфейсом G.703/10.
· На узлах и станциях цифровой сети общего пользования для синхронизации аппаратуры в ведомственных и частных сетях.
· При использовании спутниковых линий связи для обеспечения точности установки их частоты не ниже 10–11.
Как и для интерфейса на скорости 2048 кбит/с, максимально допустимое отклонение частоты сигнала 2048 кГц равно 50 ррm, а осуществлять его передачу можно двумя способами: по симметричной или коаксиальной паре (с характеристическим сопротивлением 120 и 75 Ом соответственно). Согласно РТМ [6], предпочтение отдается первому варианту.
Сигналы с частотой 2048 кГц могут представлять собой последовательность прямоугольных (или близких к ним) импульсов с чередующейся полярностью, либо быть синусоидальными.
1. Recommendation G.703. Physical/electrical characteristics of hierarchical digital interfaces (Физические и электрические характеристики иерархических цифровых интерфейсов), 1991.
2. Слепов Н. Н. Интерфейс G.703 // Сети. 1995. № 8. С. 74—78.
3. Слепов Н. Н. Синхронные цифровые сети SDH. М.: Эко-Трендз, 1997.
4. Recommendation G.702. Digital hierarchy bit rates (Скорости передачи цифровой иерархии), 1988.
5. Recommendation G.704. Synchronous frame structures used at primary and secondary hierarchical levels (Структуры синхронных циклов, используемых на первом и втором уровнях иерархии), 1991.
6. Руководящий технический материал по построению тактовой сетевой синхронизации на цифровой сети связи РФ. М.: ЦНИИС, 1995.
Об авторе
Нетес Виктор Александрович, д-р техн. наук, главный специалист Научно-технического центра “КОМСЕТ”.
Телефон: (095) 727-0112
E-mail: netes@komset.ru
№ 6 ‘1999 |
СОДЕРЖАНИЕ |
колонка редактора локальные сети бизнес интернет и интрасети защита данных корпоративные сети услуги сетей связи системы учрежденческой связи Плезиохронная цифровая иерархия и поток E1Приветствую вас, друзья! В ходе изучения Цифровых систем передачи, а так же по рекомендации наставника, дабы лучше разобраться в изучаемом материале и разложить всё по полочкам, я постараюсь объяснить этот материал Вам, если это у меня получится, то можно считать, что я его усвоил хорошо. Надеюсь Вам будет интересно. Цифровые системы передачиОсобенности построения цифровых систем передачиНи для кого не будет новостью, что основной тенденцией развития телекоммуникаций во всем мире является цифровизация сетей связи, предусматривающая построение сети на базе цифровых методов передачи и коммутации. Это объясняется следующими существенными преимуществами цифровых методов передачи перед аналоговыми: Требования к ЦСП определены в рекомендациях ITU-T серии G, так же в этой рекомендации представлено два типа иерархий ЦСП: плезиохронная цифровая иерархия (ПЦИ) и синхронная цифровая иерархия (СЦИ). Первичным сигналом для всех типов ЦСП является цифровой поток со скоростью передачи 64 Кбит/с, называемый основном цифровом каналом (ОЦК)[зарубежные источники: Basic Digital Circuit(BDC)], на Хабре уже рассказывалось о том как происходит оцифровка каналов ТЧ в этой статье. Для объединения сигналов ОЦК в групповые высокоскоростные цифровые сигналы используется принцип временного разделения каналов (ВРК)[зарубежные источники: Time Division Multiply Access (TDMA), или Time Division Multiplexing (TDM)]. Плезиохронная цифровая иерархияПоявившаяся исторически первой плезиохронная цифровая иерархия (ПЦИ) [зарубежные источники: Plesiochronous Digital Hierarchy(PDH)] имеет европейскую, северо-американскую и японскую разновидности.
Для цифровых потоков ПЦИ применяют соответствующие обозначения, для северо-американской — T, японской — J(DS), европейской — E. Цифровые потоки первого уровня обозначаются соответственно Т1, E1, J1 второго Т2, Е2, J2 и т.д… Основные принципы синхронизацииПоток Е1Структура потока Е1.Структура потока Е1 определена в рекомендации ITU-T G.704. Данный поток называется первичным цифровым потоком и организуется объединением 30-ти информационных ОЦК. Контроль ошибок передачиДля контроля ошибок передачи используется первый бит нулевого канального интервала.
По полиному x4+x+1 определяется наличие ошибки. Биты С1, С2, С3, С4 – это остаток от деления подцикла (8-ми циклов) на полином x4+x+1. При этом результат вставляют в следующий подцикл. Принимаем значение 1-го подцикла, сравниваем со 2 – м. При несовпадении выдаётся сообщение об ошибке. Биты Е1 и Е2 предназначены для передачи сообщений об ошибке на сторону передатчика по первому и по второму циклу (Е1 – для первого, Е2 – для второго). Для корректной обработки в чётных циклах (кроме 14 и 16) вводится сверхцикловой синхросигнал (001011) для контроля ошибок. Физический уровень модель OSI в ПЦИ
На этом я считаю можно остановиться. Всем спасибо за внимание, надеюсь Вам было интересно.
|