Луч что это фигура
Луч что это фигура
Построим прямую АВ
(прямая обозначена двумя большими латинскими буквами, например, А и В)
Отметим на прямой АВ точку О
Точка О разбивает прямую АВ на две части (влево от точки О и вправо от точки О)
Части, на которые точка О разбивает прямую АВ, выделены цветом
Каждая из этих частей называется лучом, а точка О является началом одного и другого луча
Назовем получившиеся лучи:
Луч является геометрической фигурой
Луч — это часть прямой, ограниченная с одной стороны
Луч имеет начало, но не имеет конца
Другой способ обозначений
Построим прямую m
(прямая обозначена малой латинской буквой, например, m)
Точка О разбивает прямую m на два луча
Назовем получившиеся лучи
Варианты обозначения лучей
Луч ОВ (обозначение двумя большими латинскими буквами)
Луч ОВ (обозначение двумя большими латинскими буквами)
Луч k (обозначение малой латинской буквой)
Начало луча обозначено буквой О
Луч k (обозначение малой латинской буквой)
Начало луча не обозначено буквой (только отмечено точкой)
Дополнительные лучи
Лучи ОА и ОВ принадлежат одной прямой АВ
Лучи ОА и ОВ имеют общее начало (точка О)
Лучи ОА и ОВ противоположно направлены
При таких условиях лучи ОА и ОВ называются дополнительными
Поделись с друзьями в социальных сетях:
Луч в математике — определение, форма и свойства
Геометрия занимается изучением разных фигур и их свойств. К ним относятся квадрат, треугольник, круг, овал, цилиндр. Луч в математике — это такая прямая, у которой нет конца. Поэтому она считается бесконечной. С данным понятием впервые сталкиваются ученики начальной школы. Более подробно материал изучается в 5 классе. Для решения задач по заданной тематике изучаются плоскость, отрезок, биссектриса.
Трактовка понятий
Впервые термин «луч» использовал в 1833 году швейцарский учёный Якоб Штейнер. Для его определения потребуется на плоскости поставить точку. Из неё должна исходить часть прямой, которая состоит из множества точек, расположенных по одну сторону от первоначальной. Само понятие «точка» считается абстрактным объектом, который не имеет высоты, радиуса, длины, сторон, угла. В задачах важно её местоположение на плоскости либо полуплоскости.
На чертеже она обозначается заглавной латинской буквой. Чтобы различить несколько точек, на рисунке используется несколько букв. Можно вводить числовое обозначение. В отличие от луча, отрезок считается частью прямой, ограниченной двумя точками на концах. Множество точек образует линию, у которой нет толщины и ширины. На плоскости можно начертить следующие её виды:
Линии пересекаются, если имеют одну общую точку. Чтобы они были перпендикулярны друг другу, между ними должен образовываться угол в 90 градусов. При параллельности части прямой не могут скрещиваться.
К особым формам луча относится ломаная. Она состоит из последовательно соединенных отрезков (звенья) под углом, отличным от 180°. Смежные звенья находятся на разных прямых.
У ломаной есть вершины. Они могут обозначаться с помощью латинских заглавных букв. Их нельзя править на маленькие. Сама вершина считается точкой, откуда начинается одна ломаная и заканчивается другая. Основным примером замкнутой линии является многоугольник. Его стороны представлены в виде звеньев.
Описание лучей
В геометрических задачах встречаются дополнительные лучи. Чтобы их начертить, потребуется отобразить на плоскости прямую, разделённую точкой на две полупрямые. Каждая часть является дополнительной относительно другой. Свойства лучей:
Дополнительные лучи могут дополнять друг друга до прямой. Отдельно рассматриваются совпадающие лучи. Если их наложить друг на друга, они совпадут. Для них характерна равная длина.
Чтобы отметить лучи на рисунке, используются порядковые номера.
Незамкнутый открытый луч состоит из точек, находящихся по одну сторону относительно проведённой линии. Для его обозначения используется строчная латинская буква либо две заглавные. Одна точка является началом, а вторая размещается на самом луче. В основе такой фигуры находятся полупрямые. Если в условиях задачи дана линия, формула выглядит следующим образом: (АB). Отрезок записывается в квадратных скобках.
Принципы классификации
Так как луч является частью прямой, поэтому через любую его точку проводится множество прямых, но только через две несовпадающие проходит одна прямая. Луч можно изобразить в нескольких вариантах: пересечение, скрещивание и параллельность.
Чтобы задать луч на плоскости, используется линейное уравнение. Фигуры называются разными способами и с помощью знаков. Можно провести полупрямую «О». Её начальная точка считается исходной и другой не существует. Другой способ записи — использование нескольких букв в середине либо в иных частях линии. Если в задаче дана прямая, её можно обозначить двумя буквами, размещёнными в разных её частях, к примеру, (АB).
Третий метод обозначения: точка «О» находится с некоторым отступом от начала. Центральную часть можно назвать буквой К. В таком случае весь луч будет называться ОК. Если нужно начертить продолжение к прямой, понадобится отметить на чертеже линию и точку, которая будет считаться производной. С помощью последней фигуры делится первая на 2 линии, которые не пересекаются между собой. Чтобы обозначить продолжение, рисуется линия карандашом.
Она будет иметь общее начало с основополагающей, но не будет совпадать с ней. Из т. О проводится прямая, не располагающаяся на дополняющих, но имеющая с ними одно общее начало. На новом луче отмечается т. В. На продолжении лежит отрезок ОВ.
Неразвернутый угол является случаем луча. Если стороны первой фигуры представлены в виде дополнительных полупрямых одной прямой, тогда угол является развёрнутым. Его значение равняется 180 градусов. Если значение угла иное, тогда он неразвернутый.
Следует отличать геометрические лучи от световых.
В математике фигура представлена в виде линии, у которой нет ничего общего с энергией. Для световых лучей характерно несконцентрированное направление, дефракция (переломанный). Но при сильном потоке света наблюдается их чёткое направление.
Аксиомы и доказательства
Свойства лучей определяются аксиомами. Положение 1: на любом луче от начала можно отложить отрезок определённой длины, и только один.
Доказательство: если на линии от начала А отложить 2 равных отрезка АВ и АС, тогда точки С и В совпадут. В и А не лежат на прямой, а находятся с одной стороны от неё. Если отрезок АВ не пересекает эту прямую, тогда множество точек, лежащих с единой стороны от прямой, называется полуплоскостью. При доказательстве положения 1 следует ориентироваться на определение луча.
Аксиома: прямая разделяет плоскость на 2 полуплоскости. Следствие: если D и С находятся в различных полуплоскостях от прямой а, тогда отрезок DC пересекает а. Из этого вытекает теорема: A, B, O, C расположены на прямой а таким образом, что А и В находятся с одной стороны от т. О, т. С и В — с одной стороны от О. При этом А и С размещены с одной стороны от О.
Доказательство: нужно провести через О прямую b, которая отлична от а. Она будет разбивать плоскость на 2 полуплоскости. На одной из них находится т. В. Так как отрезки BC и AB не пересекают прямую b, поэтому точки А и С находятся в одной полуплоскости с В. Отрезок АС не пересекает b. На нём не находится т. О. От неё по одну сторону размещены т. А и С.
Предположение: если O, A, B, C принадлежат прямой а, при этом А находится между В и О, тогда А лежит между О и С. По одну сторону от О находятся три точки А, B и C.
Доказательство: так как по условию т. А находится между О и В, поэтому А и В лежат по одну сторону от О. По второму условию В и С лежат по эту же сторону от О. Исходя из теоремы 1, А, В и С лежат по одну сторону от т. О.
Теорема: если O, A, B, C принадлежат одной линии а, т. А лежит между В и О, а т. В между О и С, тогда В находится между А и С.
Доказательство: выдвигается предположение, что из условия теоремы заключение не следует. Точка В не находится между А и С. По свойству взаиморасположения A, B, C, точки А и С лежат по одну сторону от В. По предположению следует, что они лежат по одну сторону от О, либо A, C, O лежат по одну сторону от B. Это противоречит условию: О и С находятся по разные стороны от В, либо А и С размещены по иную сторону от В, в отличие от т. О.
Подобное противоречит условию принадлежности А отрезку ОВ. Такое противоречие показывает, что предположение о т. В, не лежащей между А и С, неверное. Следовательно, точка В находится между А и С, что доказывает теорему. При решении геометрических задач, связанных с плоскостью и фигурами на ней, учитываются основные теоремы, доказанные учеными за всю историю математики.
Трактовка понятий
Впервые термин «луч» использовал в 1833 году швейцарский учёный Якоб Штейнер. Для его определения потребуется на плоскости поставить точку. Из неё должна исходить часть прямой, которая состоит из множества точек, расположенных по одну сторону от первоначальной. Само понятие «точка» считается абстрактным объектом, который не имеет высоты, радиуса, длины, сторон, угла. В задачах важно её местоположение на плоскости либо полуплоскости.
На чертеже она обозначается заглавной латинской буквой. Чтобы различить несколько точек, на рисунке используется несколько букв. Можно вводить числовое обозначение. В отличие от луча, отрезок считается частью прямой, ограниченной двумя точками на концах. Множество точек образует линию, у которой нет толщины и ширины. На плоскости можно начертить следующие её виды:
Линии пересекаются, если имеют одну общую точку. Чтобы они были перпендикулярны друг другу, между ними должен образовываться угол в 90 градусов. При параллельности части прямой не могут скрещиваться.
К особым формам луча относится ломаная. Она состоит из последовательно соединенных отрезков (звенья) под углом, отличным от 180°. Смежные звенья находятся на разных прямых.
У ломаной есть вершины. Они могут обозначаться с помощью латинских заглавных букв. Их нельзя править на маленькие. Сама вершина считается точкой, откуда начинается одна ломаная и заканчивается другая. Основным примером замкнутой линии является многоугольник. Его стороны представлены в виде звеньев.
Описание лучей
В геометрических задачах встречаются дополнительные лучи. Чтобы их начертить, потребуется отобразить на плоскости прямую, разделённую точкой на две полупрямые. Каждая часть является дополнительной относительно другой. Свойства лучей:
Дополнительные лучи могут дополнять друг друга до прямой. Отдельно рассматриваются совпадающие лучи. Если их наложить друг на друга, они совпадут. Для них характерна равная длина.
Чтобы отметить лучи на рисунке, используются порядковые номера.
Незамкнутый открытый луч состоит из точек, находящихся по одну сторону относительно проведённой линии. Для его обозначения используется строчная латинская буква либо две заглавные. Одна точка является началом, а вторая размещается на самом луче. В основе такой фигуры находятся полупрямые. Если в условиях задачи дана линия, формула выглядит следующим образом: (АB). Отрезок записывается в квадратных скобках.
Принципы классификации
Так как луч является частью прямой, поэтому через любую его точку проводится множество прямых, но только через две несовпадающие проходит одна прямая. Луч можно изобразить в нескольких вариантах: пересечение, скрещивание и параллельность.
Чтобы задать луч на плоскости, используется линейное уравнение. Фигуры называются разными способами и с помощью знаков. Можно провести полупрямую «О». Её начальная точка считается исходной и другой не существует. Другой способ записи — использование нескольких букв в середине либо в иных частях линии. Если в задаче дана прямая, её можно обозначить двумя буквами, размещёнными в разных её частях, к примеру, (АB).
Третий метод обозначения: точка «О» находится с некоторым отступом от начала. Центральную часть можно назвать буквой К. В таком случае весь луч будет называться ОК. Если нужно начертить продолжение к прямой, понадобится отметить на чертеже линию и точку, которая будет считаться производной. С помощью последней фигуры делится первая на 2 линии, которые не пересекаются между собой. Чтобы обозначить продолжение, рисуется линия карандашом.
Она будет иметь общее начало с основополагающей, но не будет совпадать с ней. Из т. О проводится прямая, не располагающаяся на дополняющих, но имеющая с ними одно общее начало. На новом луче отмечается т. В. На продолжении лежит отрезок ОВ.
Неразвернутый угол является случаем луча. Если стороны первой фигуры представлены в виде дополнительных полупрямых одной прямой, тогда угол является развёрнутым. Его значение равняется 180 градусов. Если значение угла иное, тогда он неразвернутый.
Следует отличать геометрические лучи от световых.
В математике фигура представлена в виде линии, у которой нет ничего общего с энергией. Для световых лучей характерно несконцентрированное направление, дефракция (переломанный). Но при сильном потоке света наблюдается их чёткое направление.
Аксиомы и доказательства
Свойства лучей определяются аксиомами. Положение 1: на любом луче от начала можно отложить отрезок определённой длины, и только один.
Доказательство: если на линии от начала А отложить 2 равных отрезка АВ и АС, тогда точки С и В совпадут. В и А не лежат на прямой, а находятся с одной стороны от неё. Если отрезок АВ не пересекает эту прямую, тогда множество точек, лежащих с единой стороны от прямой, называется полуплоскостью. При доказательстве положения 1 следует ориентироваться на определение луча.
Аксиома: прямая разделяет плоскость на 2 полуплоскости. Следствие: если D и С находятся в различных полуплоскостях от прямой а, тогда отрезок DC пересекает а. Из этого вытекает теорема: A, B, O, C расположены на прямой а таким образом, что А и В находятся с одной стороны от т. О, т. С и В — с одной стороны от О. При этом А и С размещены с одной стороны от О.
Доказательство: нужно провести через О прямую b, которая отлична от а. Она будет разбивать плоскость на 2 полуплоскости. На одной из них находится т. В. Так как отрезки BC и AB не пересекают прямую b, поэтому точки А и С находятся в одной полуплоскости с В. Отрезок АС не пересекает b. На нём не находится т. О. От неё по одну сторону размещены т. А и С.
Предположение: если O, A, B, C принадлежат прямой а, при этом А находится между В и О, тогда А лежит между О и С. По одну сторону от О находятся три точки А, B и C.
Доказательство: так как по условию т. А находится между О и В, поэтому А и В лежат по одну сторону от О. По второму условию В и С лежат по эту же сторону от О. Исходя из теоремы 1, А, В и С лежат по одну сторону от т. О.
Теорема: если O, A, B, C принадлежат одной линии а, т. А лежит между В и О, а т. В между О и С, тогда В находится между А и С.
Доказательство: выдвигается предположение, что из условия теоремы заключение не следует. Точка В не находится между А и С. По свойству взаиморасположения A, B, C, точки А и С лежат по одну сторону от В. По предположению следует, что они лежат по одну сторону от О, либо A, C, O лежат по одну сторону от B. Это противоречит условию: О и С находятся по разные стороны от В, либо А и С размещены по иную сторону от В, в отличие от т. О.
Подобное противоречит условию принадлежности А отрезку ОВ. Такое противоречие показывает, что предположение о т. В, не лежащей между А и С, неверное. Следовательно, точка В находится между А и С, что доказывает теорему. При решении геометрических задач, связанных с плоскостью и фигурами на ней, учитываются основные теоремы, доказанные учеными за всю историю математики.
Как объяснить, что такое луч в геометрии
Все мы когда-то изучали в школе геометрию, но далеко не каждый из нас вспомнит, что представляет собой отрезок. А уж тем более мало кто сможет объяснить понятие лучей, и как они обозначаются. Давайте постараемся в этой статье напомнить себе данные определения и рассмотрим их в математике. Также определим, что такое луч, и чем он отличается от светового. Если вникнуть, то понять будет несложно.
Определение понятий
Для начала давайте вспомним, что называется геометрией. Геометрия — это раздел математики, изучающий геометрические фигуры и их свойства. К ним относятся треугольник, квадрат, прямоугольник, параллелепипед, круг, овал, ромб, цилиндр и т. п. Простейшая фигура — это прямая. Она является бесконечной и не имеет начала. Две прямые пересекутся только в одной единственной точке. Через одну точку можно проводить бессчетное количество прямых линий. Каждая точка на линии делит ее на два.
Открытый луч
В основе геометрической фигуры, имеющей углы, лежат полупрямые. Они начинаются в точке, где пересекаются, но второй стороной направлены в бесконечность. Начало делит прямую на 2 части. На письме его обычно именуют двумя заглавными (OF) или одной буквой латиницы (а, в, с). Если дана прямая, то записывается ОВ в закругленных скобках: (ОВ). Если же это отрезок — в квадратных скобках.
Таким образом, луч — это часть прямой. Через любую точку можно провести множество прямых, но через 2 несовпадающие — только одну. Последние могут быть взаимодействовать только в трех вариантах: пересекаться, скрещиваться, быть параллельными друг другу. Существуют линейные уравнения, которые задают прямую на плоскости.
Обозначения в геометрии
Вариантов для обозначения несколько:
Отличие световых лучей от геометрических
В геометрии таковые понятия очень схожи. Луч — это линия, но она является энергией света. Другими словами — это небольшой пучок света. В оптике данное понятие, как и понятие прямой, в геометрии — базовое. У световых нет сконцентрированного направления, происходит дифракция. Но когда поток света очень сильный, расходимостью пренебрегают, и можно выделять четкое направление.
Основы геометрии
Геометрия — это раздел математики, изучающий геометрические фигуры и их свойства.
Познакомимся с основными геометрическими понятиями, изучаемыми в начальной школе.
Точка
Точка — это основная и самая простая геометрическая фигура.
В геометрии точка обозначается заглавной латинской буквой или цифрой. Многие латинские буквы по написанию похожи на английские буквы.
В тексте точку обозначают следующим символом: « (·) A » — точка « А ».
Прямая
Прямая — это самая простая геометрическая фигура, которая не имеет ни начала, ни конца.
Слова «не имеет ни начала, ни конца» говорят о том, что прямая бесконечна.
Способы обозначения прямых
Способы обозначения лучей
Отрезок
Основное свойство отрезка — это его длина.
Длина отрезка — это расстояние между его концами.
В математике отрезок обозначается заглавными латинскими буквами.
Ломаная
Ломаная — это геометрическая фигура, состоящая из точек, которые соединены отрезками.
Вершины ломаной — это точки, в которых соединяются отрезки, образующие ломаную.
Звенья ломаной — это отрезки ломаной.
В математике ломаная обозначается заглавными латинскими буквами.
Чтобы найти длину ломаной, необходимо сложить длины всех её звеньев (отрезков), из которых она состоит.
KLCM = KL + LC + CM = 3 см + 2 см + 2 см = 7 см
Вот мы и познакомились с основами геометрии. Теперь мы готовы рассмотреть не менее важную геометрическую фигуру — угол.