Луч и координатный луч чем отличаются
Луч (математика, 5 класс) – определение, что такое координатный и числовой
Определение
Луч это прямая, ограниченная с одной стороны. Это определение лучше усвоится, если выучить свойства луча:
Правильное обозначение луча спорный вопрос. Наиболее правильный вариант это две точки, например ОА. Причем первой точкой обозначают начало луча. Но также обозначают отрезки и прямые, поэтому чаще пишут луч с началом в точке О.
Углы – это единственные фигуры, состоящие из лучей. Что такое угол? Это геометрическая фигура, состоящая из двух лучей, начало которых лежит в одной точке. В фигурах углы состоят из отрезков, а не из лучей.
Может случиться ситуация, когда оде стороны угла будут совпадать, тогда говорят, что величина угла равна 0 градусов. Может получиться и так, что обе стороны угла образуют прямую, тогда говорят, что угол равен 180 градусам. Такой угол называют развернутым, а лучи основным и дополнительным.
Величина угла отражает поворот одного луча относительно другого.
Координатные лучи
Еще одно применение лучей это различные системы координат. В математике 5 класса первой темой идет изучение координатной прямой. Это два луча с углом поворота в 180 градусов. Начало лучей обозначается за нулевую точку или начало отчета. Влево от начала отчета откладываются отрицательные координаты, в право-положительные. Другое название координатной прямой: числовой луч.
Рис. 2. Координатный луч.
С помощью координатного луча удобно сравнивать дроби и таким образом решать неравенство.
С помощью координатных лучей создается и координатная плоскость. Так называемая декартова система координат состоит из двух координатных прямых или 4 лучей. Подобная система позволяет определять положение точки на плоскости, вычерчивать графики функций и графически решать разного рода уравнения.
Помимо декартовой системы существует полярная система координат. В полярной системе используются понятия угла и координатной прямой. Координатная прямая определяет положение точки, а угол степень ее подъема над осью.
Полярная система координат одна из самых древних в истории человечества. Так сложилось, что именно пользуясь этой системой, древние мореплаватели покоряли неизвестные просторы нашего мира. Декартова система появилась гораздо позднее. Но она более удобна для ориентации на местности. Декартову систему проще использовать как в разделах математики, так и других дисциплинах: физике, теплотехнике, гидравлике и программировании.
Декартовая система четырьмя лучами делиться на 4 четверти, положение точки в каждой из которых определяется знаком координат. Координаты подразделяют на абсциссы и ординаты. Проще говоря на х и у. Например точка (3, 4) имеет две положительные координаты, а значит она будет находиться в первой четверти. Обе отрицательные координаты соответствуют третьей четверти, положительный у при отрицательном х это вторая четверть, а отрицательный у при положительном х – четвертая.
Чтобы построить точку в декартовых системах координат необходимо от деления числового луча, соответствующего координате, поднять перпендикуляр. Координаты две, значит и перпендикуляров будет два. Точка их пересечения и будет искомой точкой.
Числовая прямая
Числовая прямая – это луч, с нанесенными на него числами или интервалами чисел. Числовую прямую используют для сравнения дробей, рисунков к задаче и нахождения ОДЗ функции. Последнее встречается чаще всего.
Фигурной скобкой на прямой обозначается область, в которую не могут попадать корни. После решения уравнения, найденные корни наносятся на числовую прямую. Попавшие в фигурную скобку недопустимых значений корни исключаются из решения.
Рис. 3. Числовая прямая.
Что мы узнали?
Мы узнали, что такое луч и числовая прямая. Поговорили о фигурах, составленных из лучей и системах координат, где применяются числовые прямые. Проработали вопрос наглядности изображения нужных точек и разобрались с тем, как правильно проставлять координаты на координатном луче.
Координатный луч – определение, шкала (5 класс, математика)
Координатный луч – это одна из систем ориентации в плоскости и сравнения чисел. Координатный луч очень часто используется при решении задач. Имеет смысл поговорить о координатном луче, выделить его особенности и отличия, определить правильную область применения.
Что такое координатный луч?
Координатный луч – это один из способов ориентации на плоскости.
Любой координатный луч имеет:
Направление движения обычно указывает сторону увеличения показателей.
Координатный луч позволяет определить положение точки только вдоль прямой. Что это значит? Представим себе координатный луч в виде реки. Так вот, мы можем определить положение путника у реки, но при этом, насколько он ушел вглубь берега – мы понять не сможем.
Поэтому чаще всего, вместо координатной прямой, используется декартова системы координат.
Когда-то мореплаватели к системе координатной прямой добавили угол, на который поднимается точка над линией горизонта. Так появилась полярная система координат. Это одна из самых древних систем навигации в мире.
Но координатную прямую удобно использовать для чертежей при решении задач, поэтому она до сих пор используется в курсе математики.
Чем отличается координатный луч от координатной прямой?
До этого мы уже говорили о координатной прямой. Следует сразу разделить координатный луч, числовой луч и координатную прямой.
Координатный и числовой лучи очень схожи. Различие заключается в том, что числовой луч может начинаться с любой точки и эта точка будет его началом. Все зависит от чисел, которые нам требуется сравнить. Координатный луч начинается всегда с 0, иначе он не может считаться координатным.
Координатная прямая же, в отличие от координатного луча, может быть продлена как в право, так и в лево от начала координат. Это позволяет отмечать на координатной прямой отрицательные числа.
Для того чтобы отметить отрицательные координаты на координатном луче, придется построить другой луч, который будет направлен влево.
Область применения
На самом деле, область применения координатного луча достаточно мала. Это могут быть:
На самом деле, это одна из гениальных идей математики: соединить вместе 4 координатных луча для получения системы ориентации на плоскости. Два луча лежат на одной прямой и направлены в противоположные стороны, при этом два других луча лежат на прямой, перпендикулярной первой и так же направлены в противоположные стороны.
В результате получилась система, которую уже несколько сотен лет применяют для ориентирования на плоскости. Более того, декартову систему можно перевести в пространство.
Эту систему навигации используют спутниковые системы, радары, навигационные системы автомобилей. Такой системой пользуются художники при использовании компьютерной графики. И всему этому положил начало координатный луч. Поэтому нельзя сказать, что он бесполезен. Просто луч имеет малую область применения, но именно он положил начал современным системам навигации.
Что мы узнали?
Мы поговорили об определении координатного луча. Выделили его отличия от числового луча и координатной прямой. Оговорили область применения и особенности координатного луча в математике 5 класса.
Координатная прямая (числовая прямая), координатный луч
Координатный луч изображается по той же схеме, но существенно отличается. Мы ставим точку отсчета и отмеряем единичный отрезок.
Данная статья посвящена разбору таких понятий, как координатный луч и координатная прямая. Мы остановимся на каждом понятии и подробно рассмотрим примеры. Благодаря этой статье вы сможете освежить свои знания или ознакомиться с темой без помощи преподавателя.
Координатный луч
Для того, чтобы определить понятие координатного луча, следует иметь представление о том, что такое луч.
На примере мы видим, что O является началом луча.
Координатный луч изображается по той же схеме, но существенно отличается. Мы ставим точку отсчета и отмеряем единичный отрезок.
От конца единичного отрезка нужно отложить несколько штрихов и сделать разметку.
Координатный луч – это шкала, которая может длиться до бесконечности.
Мы в любом случае сможем продолжить шкалу до того числа, которое нам необходимо. Вы можете записывать числа как удобно – под лучом или над ним.
Для отображений координат луча могут использоваться как заглавные, как и строчные буквы.
Координатная прямая
Проведите луч в противоположную сторону, дополнив его до прямой
Отложите единичные отрезки по примеру, указанному выше
Вы можете отметить только начало отсчета и единичные отрезки. Смотрите на примере, как это будет выглядеть.
Соответствие между точками координатной прямой и действительными числами
Координатная прямая может содержать множество точек. Они напрямую связаны с действительными числами. Это можно определить, как взаимно однозначное соответствие.
Каждой точке на координатной прямой соответствует единственное действительное число, а каждому действительному числу соответствует единственная точка на координатной прямой.
Для того, чтобы лучше понять правило, следует отметить точку на координатной прямой и посмотреть, какое натуральное число соответствует отметке. Если эта точка совпадает с началом отсчета, она будет отмечена нулем. Если точка не совпадает с началом отсчета, мы откладываем нужное количество единичных отрезков до тех пор, пока не достигнем указанной отметки. Число, записанное под ней, и будет соответствовать данной точке. На примере, указанном внизу, мы покажем вам это правило наглядно.
Если мы не можем найти точку, откладывая единичные отрезки, следует отмечать также точки, составляющие одну десятую, сотую или тысячную долю единичного отрезка. На примере можно подробно рассмотреть данное правило.
Отложив несколько подобных отрезков, мы сможем получить не только целое, но и дробное число – как положительное, так и отрицательное.
Множество действительных чисел включается в себя все числа, которые можно записать в виде дроби. Это позволяет выявить правило.
Каждой точке координатной прямой соответствует конкретное действительное число. Разные точки определяют разные действительные числа.
Это соответствие однозначно –каждой точке соответствует определенное действительное число. Но это работает также и в обратном направлении. Мы также можем указать определенную точку на координатной прямой, которая будет относиться конкретному действительному числу. Если число не является целым, то нам необходимо отметить несколько единичных отрезков, а также десятых, сотых долей в заданном направлении. Например, числу 400350 отвечает точка на координатной прямой, в которую из начала отсчета можно попасть, отложив в положительном направлении 400 единичных отрезков, 3 отрезка, составляющих десятую долю единичного, и 5 отрезков – тысячную долю.
Каждой точке на координатной прямой отвечает действительное число, и каждое действительное число отмечается в виде точки на координатной прямой.
Благодаря этому утверждению координатную прямую зачастую определяют как числовую.
Координаты точек на координатной прямой
Число, соответствующее точке на координатной прямой, называется координатой этой точки.
Ранее было отмечено, что к каждому числу относится единственная точка на прямой. Можно сказать, что координата точки определяет ее положение на прямой. Именно координата задает эту точку.
Шкалы. Координатный луч
Содержание
Для измерения длины отрезка используется линейка. Измерение возможно за счет того, что на линейку нанесена шкала — это штрихи через одинаковые промежутки.
На школьный линейках, как правило, расстояние между штрихами равно 1 мм, оно называется делением.
Дополнительно на линейках обозначены и сантиметровые интервалы — под удлиненными штрихами стоят цифры. Один сантиметровый отрезок содержит в себе 10 делений по 1 мм.
Шкалу также можно увидеть в термометре. Там одно деление соответствует одному градусу, цифрами обозначены величины, равные 10, 20, 30 градусам и т.д.
Еще шкала бывает на весах. Обычно одно деление весов равно 100 гр. Цифрами обозначены величины в 1, 2, 3 кг и т. д.
Но если нужно взвешивать большие предметы, то применяются весы, деление шкалы в которых больше чем 100 гр. В этом случае используются такие единицы измерения массы, как тонна и центнер.
1 тонна обозначается как 1 т, 1 т = 1000 кг.
1 центнер обозначается как 1 ц, 1 ц = 100 кг.
Шкала также есть на таком приборе, как динамометр
Координатный луч
В математике шкалу можно встретить на координатном луче. Разберем подробнее, что это за луч и как его построить.
Начертим луч ОХ, как показано на рисунке 1.
Рисунок 1
Точка О является его началом. Она соответствует числу 0. От точки О вправо отложим отрезок, равный 1 см, а полученную точку обозначим Е (рисунок 2).
Рисунок 2
Точка Е будет соответствовать числу 1. Отрезок ОЕ называется единичным.
Таким образом, луч ОХ стал координатным лучом, где О — это начало координат, а ОЕ — единичный отрезок. (Единичный отрезок в нашем примере равен 1 см, но он может быть любой длины, именно это длина будет приниматься на координатном луче за единицу измерения.)
Числа, соответствующие точкам на координатном луче, называются координатами этих точек. Говорят так: точка О имеет координату 0, точка Е имеет координату 1. Записывается это следующим образом: О(0), Е(1).
Рисунок 3
Отметим на координатной луче точки А(2), В(3), С(4) — рисунок 3. Так мы получили на координатном луче шкалу, которую можно продолжать бесконечно.
Шкалы, координаты
Для определения размера какой-либо величины (длина, вес, температура и т.д.) мы используем измерительные приборы и инструменты со шкалами для отображения результата.
Шкала – это расположенный в определенной последовательности ряд отметок, которые соответствуют числовому значению измеряемой величины.
Например, в школьном курсе математики и геометрии для измерения длины геометрического объекта, в частности отрезка, используется линейка (рисунок 1).
Рисунок 1. Измерительная линейка.
Из урока Измерение величин вы уже знаете, что такое единица измерения, а их соотношения можете посмотреть в справочном разделе.
Деления шкалы – это равные части, на которые она разбита. Каждое деление шкалы обозначается отметками (черточками).
Нулевая отметка шкалы – это отметка, которая соответствует нулевому значению измеряемой нами величины.
Цена деления шкалы – это величина значения одного деления шкалы. То есть, это величина значения между двумя соседними отметками на шкале.
Как мы видим на рисунке 1, деления, обозначенные большими черточками, пронумерованы, и значение каждого такого деления равно 1 см. В этом легко убедиться, если найти разницу между значениями каждого из соседних делений: 1-0=1, 2-1=3, …, 9-8=1, 10-9=1.
Но каждое из больших делений разделено девятью маленькими черточками на 10 делений. Мы знаем, что в 1 см содержится 10 мм, поэтому разделив эти 10 мм на 10 делений, мы получим цену деления линейки, равную 1 мм.
Цена деления может отличаться не только у разных же измерительных приборов, но и у одних и тех же.
Рисунок 2 Цена деления шкалы
Например, на рисунке 2 изображены два термометра. Как вы думаете, они показывают одинаковую температуру, или нет?
Давайте посмотрим, так ли это? На левом термометре разница между двумя соседними пронумерованными отметками равна 10°C: 10-0=10, 20-10=10, и т.д. На правом же термометре эта разница равняется уже 20°C: 20-0=20, 40-20=20, и т.д. На обоих термометрах маленькие черточки делят одно большое пронумерованное деление на 10 частей. Разделив разницу между значениями пронумерованных отметок (10 и 20 соответственно) на количество делений между ними (10), мы получим цену деления каждого из термометров:
Итак, оба термометра показывают 20°C и еще два деления. Но на левом термометре это означает 20°C и еще два раза по 1°C, то есть, 20+2=22°C, а на правом – 20°C и еще два раза по 2°C, то есть, 20+4=24°C.
Координатный луч, единичный отрезок, координаты точки
Различные прямые линии со шкалами играют важную роль в школьной математике. Сейчас я познакомлю вас с одной из них.
Нарисуем точку O и проведем от нее направо луч. Обозначим направление луча стрелкой.
Рис. 3. Луч с началом в точке O
Рис. 4. Луч с равными отрезками
Поставим возле начала луча (точки O ) число 0 (нуль). Возле второго конца отрезка OP (возле точки P ) поставим число 1 (один). Таким образом мы обозначаем, что длина отрезка OP равна 1 (единице).
Аналогичным образом вы можете легко найти числа, соответствующей каждой поставленной нами на луче точке.
Рис. 5. Луч с отрезками и цифрами
Покажу еще раз на примере точки S :
так как RS=OP (по условиям построения данных отрезков),
подставив известные нам значения длины отрезков OR и OP, получим:
Значит, точке S на нашем лучу соответствует число 3.
Оставим на луче только числовые значения, а все буквы кроме O отбросим. В итоге у нас получился вот такой луч с отрезками и числами, которые соответствуют концам этих отрезков.
Рис. 6. Координатный луч
Глядя на рисунок 6, легко заметить, что отрезки, лежащие на луче, это не что иное, как нанесенная на луч шкала. Действительно, смотрите сами.
Точка O с соответствующим ей числом 0 (нуль) называется точка отсчета, что аналогично нулевой отметке шкалы. Обычно этой буквой всегда помечают в рисунках точку отсчета.
Единичный отрезок – это отрезок, длина которого принята нами за единицу длины и равна 1(единице). Точке, обозначающей правый конец единичного отрезка, соответствует число 1.
Координатный луч – это луч с отмеченным на нем единичным отрезком, точкой начала отсчета, которой соответствует число 0 (нуль), и указанным направлением отсчета.
Координатный луч еще называют числовой луч.
Координатный луч — это не что иное, как бесконечная шкала.
Длина единичного отрезка может быть любой. Она выбирается каждый раз отдельно и при ее выборе ориентируются на то, чтобы на рисунке поместились все необходимые в данный момент числа. Например, на рисунке 7-а длина единичного отрезка составляет 5 см, а на рисунке 7-б всего 1 см.
Рис. 7. Разные варианты единичного отрезка
Как вы заметили из предыдущего рисунка, для разметки луча отрезками можно вместо кружочков использовать штрихи везде, кроме точки O (начала отсчета). Кружочки рисуют поверх этих штрихов тогда, когда необходимо отметить на числовом луче какое-то натуральное число. В этом случае мы дополнительно обозначаем его заглавной (большой) буквой латинского алфавита (смотрите рисунок 8).
Координатный луч служит для наглядного отображения и сравнения чисел натурального ряда.
Действительно, длина каждого отрезка числового луча отличается от длины предыдущего на единицу, точно так же, как и каждый элемент числового ряда отличается от предыдущего.
Координата точки числового луча – это число, которое соответствует поставленной на числовом луче точке.
Рис. 8. Координаты точек
Точке A соответствует число 5 координатного луча, точке B – число 8, точке C – число 13. Запишем полученные координаты точек: A ( 5 ), B ( 8 ), C ( 13 ).
В отдельных случаях для обозначения на координатном луче больших натуральных чисел, допускается не отображать на рисунке точку отсчета и единичный отрезок, показывая только тот участок луча, на котором расположены данные числа.
Рис. 9. Большие числа на координатном луче.
Насколько публикация полезна?
Нажмите на звезду, чтобы оценить!
Средняя оценка 4.2 / 5. Количество оценок: 9