Мв3730 что за микросхема
Мв3730 что за микросхема
Интегральная микросхема M5106P фирмы Mitsubishi выполнена в корпусе DIP6 с 14 выводами и представляет собой усилитель мощности низкой частоты. Предназначена для использования в магнитофонах, электрофонах, телевизионных и радиоприемниках, другой аудиоаппаратуре среднего класса. В микросхему встроена защита выхода от короткого замыкания в нагрузке. Для получения максимальной выходной мощности нет необходимости в теплоотводе (радиаторе). Некоторые из основных параметров микросхемы следующие:
Интегральная микросхема M5112Y фирмы Mitsubishi выполнена в корпусе SIP6 с 10 выводами и представляет собой усилитель мощности низкой частоты. Предназначена для использования в магнитофонах, электрофонах, телевизионных и радиоприемниках, другой аудиоаппаратуре среднего класса. В микросхему встроена защита выхода от короткого замыкания в нагрузке. Для получения максимальной выходной мощности микросхему необходимо установить на теплоотвод (радиатор). Некоторые из основных параметров микросхемы следующие:
Интегральная микросхема M5118L фирмы Mitsubishi выполнена в корпусе SIL с 8 выводами и представляет собой усилитель мощности низкой частоты. Предназначена для использования в магнитофонах, электрофонах, телевизионных и радиоприемниках, другой аудиоаппаратуре среднего класса. В микросхему встроена защита выхода от короткого замыкания в нагрузке. Для получения максимальной выходной мощности нет необходимости в теплоотводе (радиаторе). Некоторые из основных параметров микросхемы следующие:
Интегральные микросхемы МВ3730, МВ3730А и МВ3731 фирмы Fujitsu выполнены в корпусах SIP2 с 7 выводами и представляют собой усилители мощности низкой частоты по мостовой схеме. Предназначены для использования в магнитофонах, электрофонах, телевизионных и радиоприемниках, другой аудиоаппаратуре среднего класса. В микросхемы встроена защита выхода от короткого замыкания в нагрузке. Для получения максимальной выходной мощности микросхемы необходимо установить на теплоотвод (радиатор). Некоторые из основных параметров микросхем следующие:
Интегральные микросхемы МС13500Т2 (Motorola) и ТА8200АН (Toshiba) выполнены в корпусах SIP2 с 12 выводами и представляют собой двухканальные усилители мощности низкой частоты с идентичными параметрами и схемами (цоколевками). Предназначены для использования в магнитофонах, электрофонах, телевизионных и радиоприемниках, другой аудиоаппаратуре высокого класса. В микросхемы встроена защита выхода от короткого замыкания в нагрузкой термозащита. Переключатель SW1 включает функцию «MUTE». Для получения максимальной выходной мощности микросхемы необходимо установить на теплоотвод (радиатор). Некоторые из основных параметров микросхем (выходные параметры для одного канала) следующие:
Интегральные микросхемы OPA541AP, OPA541AM, OPA541BM и OPA541SM фирмы Burr-Brown выполнены в корпусах SIP8 с 11 выводами (OPA541AP) или ТО-3 с 8 выводами (OPA541AM, OPA541BM и OPA541SM). Представляют собой мощные операционные усилители и могут быть использованы в качестве усилителей мощности низкой частоты в магнитофонах, электрофонах, телевизионных и радиоприемниках, другой аудиоаппаратуре высокого класса. Типовая схема подключения для OPA541AP приведена на рис. 1, для OPA541AM, OPA541BM и OPA541SM- на рис. 2. Параметры микросхем идентичны, отличаясь между собой температурным диапазоном функционирования. В микросхемы встроена защита выхода от короткого замыкания в нагрузке и термозащита. Для получения максимальной выходной мощности микросхемы необходимо установить на теплоотвод (радиатор). Некоторые из основных параметров микросхем следующие:
Интегральные микросхемы ОРА2541АМ, ОРА2541ВМ, OPA2541BSM, ОРА2544ВМ и OPA2544SM (Burr-Brown), PA25 и РД25А (Apex) выполнены в корпусах-ТО-3 с 8 выводами. Представ ляют собой мощные двухканальные операционные усилители и могут быть использованы в качестве усилителей мощности низкой частоты в стереофонических магнитофонах, электрофонах, телевизионных и радиоприемниках, другой аудиоаппаратуре высокого класса. Типовая схема подключения приведена на рис. 1. Параметры микросхем ОРА2541АМ, ОРА2541ВМ и OPA2541SM (соответственно ОРА2544ВМ и OPA2544SM) идентичны, отличаясь между собой температурным диапазоном функционирования. Для получения удвоенной выходной мощности на том же сопротивлении нагрузки, при том же напряжении питания, микросхемы можно подключать по мостовой схеме (рис. 2) или с паралельным выходом (рис. 3). В микросхемы встроена защита выхода от короткого замыкания в нагрузке и термозащита. Для получения максимальной выходной мощности микросхемы необходимо установить на теплоотвод (радиатор). Некоторые из основных параметров микросхем (выходные параметры для каждого канала) следующие:
Интегральная микросхема M5106P фирмы Mitsubishi выполнена в корпусе DIP6 с 14 выводами и представляет собой усилитель мощности низкой частоты. Предназначена для использования в магнитофонах, электрофонах, телевизионных и радиоприемниках, другой аудиоаппаратуре среднего класса. В микросхему встроена защита выхода от короткого замыкания в нагрузке. Для получения максимальной выходной мощности нет необходимости в теплоотводе (радиаторе). Некоторые из основных параметров микросхемы следующие:
Интегральная микросхема M5112Y фирмы Mitsubishi выполнена в корпусе SIP6 с 10 выводами и представляет собой усилитель мощности низкой частоты. Предназначена для использования в магнитофонах, электрофонах, телевизионных и радиоприемниках, другой аудиоаппаратуре среднего класса. В микросхему встроена защита выхода от короткого замыкания в нагрузке. Для получения максимальной выходной мощности микросхему необходимо установить на теплоотвод (радиатор). Некоторые из основных параметров микросхемы следующие:
Интегральная микросхема M5118L фирмы Mitsubishi выполнена в корпусе SIL с 8 выводами и представляет собой усилитель мощности низкой частоты. Предназначена для использования в магнитофонах, электрофонах, телевизионных и радиоприемниках, другой аудиоаппаратуре среднего класса. В микросхему встроена защита выхода от короткого замыкания в нагрузке. Для получения максимальной выходной мощности нет необходимости в теплоотводе (радиаторе). Некоторые из основных параметров микросхемы следующие:
Интегральные микросхемы МВ3730, МВ3730А и МВ3731 фирмы Fujitsu выполнены в корпусах SIP2 с 7 выводами и представляют собой усилители мощности низкой частоты по мостовой схеме. Предназначены для использования в магнитофонах, электрофонах, телевизионных и радиоприемниках, другой аудиоаппаратуре среднего класса. В микросхемы встроена защита выхода от короткого замыкания в нагрузке. Для получения максимальной выходной мощности микросхемы необходимо установить на теплоотвод (радиатор). Некоторые из основных параметров микросхем следующие:
Интегральные микросхемы МС13500Т2 (Motorola) и ТА8200АН (Toshiba) выполнены в корпусах SIP2 с 12 выводами и представляют собой двухканальные усилители мощности низкой частоты с идентичными параметрами и схемами (цоколевками). Предназначены для использования в магнитофонах, электрофонах, телевизионных и радиоприемниках, другой аудиоаппаратуре высокого класса. В микросхемы встроена защита выхода от короткого замыкания в нагрузкой термозащита. Переключатель SW1 включает функцию «MUTE». Для получения максимальной выходной мощности микросхемы необходимо установить на теплоотвод (радиатор). Некоторые из основных параметров микросхем (выходные параметры для одного канала) следующие:
Интегральные микросхемы OPA541AP, OPA541AM, OPA541BM и OPA541SM фирмы Burr-Brown выполнены в корпусах SIP8 с 11 выводами (OPA541AP) или ТО-3 с 8 выводами (OPA541AM, OPA541BM и OPA541SM). Представляют собой мощные операционные усилители и могут быть использованы в качестве усилителей мощности низкой частоты в магнитофонах, электрофонах, телевизионных и радиоприемниках, другой аудиоаппаратуре высокого класса. Типовая схема подключения для OPA541AP приведена на рис. 1, для OPA541AM, OPA541BM и OPA541SM- на рис. 2. Параметры микросхем идентичны, отличаясь между собой температурным диапазоном функционирования. В микросхемы встроена защита выхода от короткого замыкания в нагрузке и термозащита. Для получения максимальной выходной мощности микросхемы необходимо установить на теплоотвод (радиатор). Некоторые из основных параметров микросхем следующие:
Интегральные микросхемы ОРА2541АМ, ОРА2541ВМ, OPA2541BSM, ОРА2544ВМ и OPA2544SM (Burr-Brown), PA25 и РД25А (Apex) выполнены в корпусах-ТО-3 с 8 выводами. Представ ляют собой мощные двухканальные операционные усилители и могут быть использованы в качестве усилителей мощности низкой частоты в стереофонических магнитофонах, электрофонах, телевизионных и радиоприемниках, другой аудиоаппаратуре высокого класса. Типовая схема подключения приведена на рис. 1. Параметры микросхем ОРА2541АМ, ОРА2541ВМ и OPA2541SM (соответственно ОРА2544ВМ и OPA2544SM) идентичны, отличаясь между собой температурным диапазоном функционирования. Для получения удвоенной выходной мощности на том же сопротивлении нагрузки, при том же напряжении питания, микросхемы можно подключать по мостовой схеме (рис. 2) или с паралельным выходом (рис. 3). В микросхемы встроена защита выхода от короткого замыкания в нагрузке и термозащита. Для получения максимальной выходной мощности микросхемы необходимо установить на теплоотвод (радиатор). Некоторые из основных параметров микросхем (выходные параметры для каждого канала) следующие:
Обзор импульсных блоков питания и электронных трансформаторов. Часть 4
Светодиодный драйвер AC/DC 3…5 Вт с выходном напряжением 9…18 В при токе в нагрузке 300 mА.
Преобразователь бескорпусный, внешний вид показан на рисунке 1. Печатная плата без импульсного трансформатора – на рисунке 2, там же видна маркировка «DARK ENERGI» и «M34.0305LN-00-0» с обратной стороны печатной платы. Схема собрана на ШИМ-контроллере CS8222BO (рис.3).
На нагрузку в виде сопротивления 51 Ом выдаёт напряжение около 14,8 В с пульсациями амплитудой 1,3 В и частотой около 53 кГц. График стабильности выходного напряжения при изменении ЛАТР-ом сетевого в пределах от 180 В до 240 В показан в верхней половине рисунка 4 (14,82 В при 180 В и 14,8 В при 240 В). Ниже, с более тонким графиком, показан результат изменения питания преобразователя с подпаянном к С3 дополнительным электролитическом конденсатором 47 мФ 35 В – пульсации уменьшились до 0,4 В. Преобразователь греется слабо, основной нагрев у трансформатора Т1 и диода D5.
Точно такой же преобразователь стоит в другом LED драйвере AC/DC, оформленном в пластиковом корпусе и имеющем выходной разъём (рис.5).
Печатная плата (рис.6 и рис.7) идентична варианту DARK ENERGI M34.0305LN-00-0, но на обратной стороне написано, что это «V1.3B». Схема (рис.8) отличается только незначительным увеличением сопротивления резистора RS1 (1R15). Микросхема – BP9022A (скорее всего, аналогична CS8222BO). На печатной плате видны не смытые следы флюса, капли припоя и плохо пропаянные выводы трансформатора.
Стабильность выходного напряжения и уровень пульсаций в нём такие же, как и у DARK ENERGI M34.0305LN-00-0, только частота преобразования около 40 кГц и ток в нагрузке ограничивается значением 0,23…0,24 А. На нагрузке 52 Ом выходное напряжение 12,4 В при 180 В «сетевого» и 12,28 В при 240 В.
Третий преобразователь модель BG(1-3)X1W имеет такую же схемотехнику, но выполнен с применением других деталей и c другой разводкой дорожек на печатной плате.
Стабильность выходного напряжения на нагрузке 52 Ом при изменении сетевого 220-180-240 В показана на рисунке 13 – 12,58 В при 180 В, 12,64 В при 220 В и 12,7 В при 240 В. Ток в нагрузке, соответственно, 0,242 А, 0,243 А и 0,244 А. Пульсации имеют амплитуду 0,3 В и частоту следования около 73 кГц. Греется слабо.
Следующий преобразователь – безкорпусной и безымянный LED драйвер AC/DC 1…3 Вт с выходным напряжением 3…12 В при токе в нагрузке 300 мА.
При подключенной нагрузке 74 Ом преобразователь имеет очень большой уровень пульсаций в выходном напряжении – около 4 В частотой около 94 кГц. С нагрузкой 52 Ом пульсации увеличиваются до 6 В. При подключенном параллельно С3 электролитическом конденсаторе ёмкостью 47 мкФ схема не запускается. Но с двумя дополнительными керамическими конденсаторами по 1 мкФ каждый, схема работает и пульсации уменьшились до 0,8…1 В. При поверке конденсатора С3 оказалось, что он целый, но имеет ёмкость 0,1 мкФ.
Рассчитан преобразователь на ток в нагрузке около 0,25 А и при этом выдаёт около 18,24 В на 74 Ом, 13,12 В на 52 Ом и 10,62 В на 41 Ом. Для варианта с нагрузкой 52 Ом график уровня выходного напряжения при изменении сетевого напряжения показан на рисунке 17 – 13,12 В при 180 В, 13,16 В при 220 В и 13,24 В при 240 В (ток в нагрузке 0,254 А, 0,253 А и 0,255 А). Греется слабо, но сильно «шумит в эфир».
Преобразователь рассчитан на подключение трёхвольтовых светодиодов. Их оптимальное количество указано на этикетке и у данного экземпляра составляет 50…80 шт. Внешний вид и внутренности показаны на рисунке 18, схема – на рисунке 19. Следует обратить внимание, что нагрузка никак гальванически не «отвязана» от сетевого напряжения и при неаккуратном использовании светильника есть риск поражения электрическим током. Маркировка на печатной плате – «FY1773».
Схема простая, никаких преобразователей. Применено обычное «гашение» сетевого переменного напряжения конденсатором С1 (с учётом предполагаемого тока в нагрузке) и последующее выпрямление оставшегося после «гашения» напряжения. Выпрямитель упрощён до двух диодов и двух конденсаторов.
Трёхвольтовых светодиодов в таком количестве для проверки не нашлось, был использован один шестивольтовый 3535 с рабочим током 0,24 А. Среднее выпрямленное напряжение получилось 5,88 В, пульсации около 0,5 В (рис.20). На верхнем графике видно, что при изменение «сети» 220-180-240 В напряжение питания светодиода меняется очень мало (50 мВ по показаниям мультиметра ВР-11А). На нижнем графике показана форма пульсаций при сетевом напряжении равном 220 В.