pu arr extso что значит
Массивы в С++
Массивы бывают – одномерными, двумерными и многомерные (n-мерные). Индексы массива начинаются с нуля (это смещение). Сначала пишется тип данных, которые будут храниться в массиве, потом имя массива, после могут быть указаны данные.
int arr[2];//Создаем массив arr из 2-х элементов
arr[0]=1;//Первый элемент массива
arr[1]=1;//Второй элемент массива
int size=2;
int arr[size];
.
А можно уже с данными, при этом количество элементов указывать не обязательно.
int arr[]=<1,2,3>;//Можно сразу создать массив со значениями
Длина массива
int n=sizeof(arr)/sizeof(int);//Длина массива
//или
int n=sizeof(arr)/sizeof(arr[0]);//Длина массива
#include
using namespace std;//Пространство имён
int main()
<
setlocale(0,»»);//Кириллица
int arr[]=<1,2,3>;//Создаем массив и значения
int n=sizeof(arr)/sizeof(arr[0]);//Делим размер всего массива на размер первого (одного) элемента
cout
using namespace std;//Пространство имён
int arr[]=<5,-12,-3,9,10>;//Создаем массив
int n=sizeof(arr)/sizeof(arr[0]);//Узнаем длину массива
for(int i=0; i
#include //Библиотека rand
#include //Библиотека time
using namespace std;//Пространство имён
int main()
<
setlocale(0,»»);//Кириллица
unsigned rand_value=time(0);//Секунд с 01.01.1970
srand(rand_value);//Рандомизация генератора случайных чисел
//srand(time(0));//Или так
int size=5;//Длина массива
int* arr=new int[size];//Выделение динамической памяти под массив
Указатели в C++: зачем нужны, когда использовать и чем отличаются
Память компьютера — это длинный ряд ячеек. Размер каждой ячейки называется байтом. Байт — это пространство, занятое английским символом алфавита. Объект в обычном понимании — это последовательный набор байтов в памяти. Каждая ячейка имеет адрес, который представляет собой целое число, обычно записанное в шестнадцатеричной форме. Есть три способа доступа к объекту в памяти. Доступ к объекту можно получить с помощью так называемого указателя. Доступ к нему можно получить, используя так называемую ссылку. К нему по-прежнему можно получить доступ с помощью идентификатора. В этой статье основное внимание уделяется использованию указателей и ссылок. В C ++ есть заостренный объект и объект-указатель. У остроконечного предмета есть интересующий предмет. Объект-указатель имеет адрес указанного объекта.
Вам необходимо иметь базовые знания C ++, включая его идентификаторы, функции и массивы; чтобы понять эту статью.
У объекта-указателя и объекта-указателя есть свой идентификатор.
Оператор Address-Of, &
Это унарный оператор. Если за ним следует идентификатор, он возвращает адрес объекта идентификатора. Рассмотрим следующее объявление:
Ниже приведен код, следующее выражение, вернет адрес, идентифицированный ptdInt:
Вам не нужно знать точный адрес (номер) при кодировании.
Оператор косвенного обращения, *
Это унарный оператор в контексте указателей. Обычно он печатается перед идентификатором. Если используется в объявлении идентификатора, то идентификатор является объектом-указателем, который содержит только адрес указанного объекта. Если используется перед идентификатором объекта-указателя, чтобы что-то вернуть, то возвращаемое значение является значением указанного объекта.
Создание указателя
Взгляните на следующий фрагмент кода:
Сегмент начинается с объявления указанного объекта ptdFloat. ptdFloat — это идентификатор, который просто идентифицирует объект с плавающей запятой. Ему мог быть присвоен реальный объект (значение), но в этом случае ему ничего не было присвоено. Далее в сегменте идет объявление объекта-указателя. Оператор косвенного обращения перед этим идентификатором означает, что он должен содержать адрес указанного объекта. Тип объекта, плавающий в начале оператора, означает, что заостренный объект является плавающим. Объект-указатель всегда имеет тот же тип, что и заостренный объект. ptrFoat — это идентификатор, который просто идентифицирует объект-указатель.
В последнем операторе кода адрес указанного объекта присваивается объекту-указателю. Обратите внимание на использование оператора адресации &.
Последний оператор (строка) выше показывает, что после объявления объекта-указателя без инициализации вам не нужен оператор косвенного обращения, когда вам нужно его инициализировать. Фактически, использование оператора косвенного обращения в третьей (последней) строке является синтаксической ошибкой.
Объект-указатель может быть объявлен и инициализирован указанным объектом в одной инструкции, как показано ниже:
Первая строка предыдущего сегмента кода и эта совпадают. Здесь вторая и третья строки предыдущего сегмента кода объединены в один оператор.
Обратите внимание, что в приведенном выше коде при объявлении и инициализации объекта-указателя необходимо использовать оператор косвенного обращения. Однако он не используется, если инициализация должна быть выполнена позже. Объект-указатель инициализируется адресом указанного объекта.
В следующем сегменте кода оператор косвенного обращения используется для возврата содержимого указанного объекта.
В последнем предложении здесь оператор косвенного обращения использовался для возврата значения, на которое указывает идентификатор указателя. Таким образом, при использовании в объявлении идентификатор для оператора косвенного обращения будет содержать адрес указанного объекта. При использовании в выражении возврата в сочетании с идентификатором указателя оператор косвенного обращения возвращает значение указанного объекта.
Присвоение нуля указателю
Объект-указатель всегда должен иметь тип указанного объекта. При объявлении объекта-указателя должен использоваться тип данных указанного объекта. Однако значение десятичного нуля может быть присвоено указателю, как в следующем сегменте кода:
int ptdInt = 5 ;
int * ptrInt = ;
В любом случае указатель (идентификатор) называется нулевым указателем; это означает, что он указывает в никуда. То есть у него нет адреса какого-либо указанного объекта. Здесь 0 — это десятичный ноль, а не шестнадцатеричный ноль. Шестнадцатеричный ноль будет указывать на первый адрес памяти компьютера.
Не пытайтесь получить значение, на которое указывает нулевой указатель. Если вы попробуете это сделать, программа может скомпилироваться, но не запуститься.
Имя массива как постоянный указатель
Рассмотрим следующий массив:
Имя массива arr на самом деле является идентификатором, который имеет адрес первого элемента массива. Следующее выражение возвращает первое значение в массиве:
В случае с массивом оператор приращения ++ ведет себя иначе. Вместо добавления 1 он заменяет адрес указателя на адрес следующего элемента в массиве. Однако имя массива — это постоянный указатель; это означает, что его содержимое (адрес) не может быть изменено или увеличено. Итак, для увеличения начальный адрес массива должен быть назначен непостоянному указателю следующим образом:
Теперь ptr можно увеличивать, чтобы указывать на следующий элемент массива. ptr был объявлен здесь как объект-указатель. Без * здесь не было бы указателя; это будет идентификатор для хранения объекта типа int, а не для хранения адреса памяти.
Следующий сегмент кода, наконец, указывает на четвертый элемент:
Следующий код выводит четвертое значение массива:
Имя функции как идентификатор
Имя функции — это идентификатор функции. Рассмотрим следующее определение функции:
fn — идентификатор функции. Выражение,
возвращает адрес функции в памяти. fn похожа на заостренный объект. Следующее объявление объявляет указатель на функцию:
Идентификатор указанного объекта и идентификатор объекта-указателя различаются. func — это указатель на функцию. fn — идентификатор функции. Итак, func может указывать на fn следующим образом:
Значение (содержание) func — это адрес fn. Два идентификатора могли быть связаны с помощью оператора инициализации следующим образом:
Обратите внимание на различия и сходства в обработке указателей функций и скалярных указателей. func — указатель на функцию; это заостренный объект; он объявлен иначе, чем скалярный указатель.
Функцию можно вызвать с помощью,
Его нельзя вызвать с помощью * func ().
Когда функция имеет параметры, во вторых скобках указаны типы параметров, и для них не обязательно должны быть идентификаторы. Следующая программа иллюстрирует это:
#include
using namespace std ;
C++ Reference
Ссылка в C ++ — это просто способ создать синоним (другое имя) для идентификатора. Он использует оператор &, но не так, как & используется для указателей. Рассмотрим следующий фрагмент кода:
cout myInt ‘ \n ‘ ;
cout yourInt ‘ \n ‘ ;
Первый оператор инициализирует идентификатор myInt; т.е. myInt объявлен и содержит значение 8. Второй оператор создает новый идентификатор yourInt, синоним myInt. Для этого в объявлении между типом данных и новым идентификатором помещается оператор &. Операторы cout показывают, что два идентификатора являются синонимами. Чтобы вернуть значение в этом случае, вам не нужно ставить перед ним *. Просто используйте идентификатор.
Здесь myInt и yourInt — это не два разных объекта. Это два разных идентификатора, которые ссылаются (идентифицируют) одно и то же место в памяти, имеющее значение 8. Если значение myInt изменяется, значение yourInt также изменится автоматически. Если значение yourInt изменится, значение myInt также изменится автоматически.
Ссылка на функцию
Так же, как у вас может быть ссылка на скаляр, вы также можете иметь ссылку на функцию. Однако кодирование ссылки на функцию отличается от кодирования ссылки на скаляр. Следующая программа иллюстрирует это:
Обратите внимание на первый оператор в функции main, который делает func синонимом fn. Оба ссылаются на одну и ту же функцию. Обратите внимание на одноразовое использование и положение &. Таким образом, & является здесь ссылочным оператором, а не оператором адресации. Чтобы вызвать функцию, просто используйте любое имя.
Идентификатор ссылки — это не то же самое, что идентификатор указателя.
Функция, возвращающая указатель
В следующей программе функция возвращает указатель, который является адресом указанного объекта:
Первый оператор в функции fn () предназначен только для создания объекта-указателя. Обратите внимание на одноразовое использование и положение * в сигнатуре функции. Также обратите внимание, как указатель (адрес) был получен в функции main () другим объектом-указателем.
Функция, возвращающая ссылку
В следующей программе функция возвращает ссылку:
Первый оператор в функции fn () предназначен только для создания ссылки. Обратите внимание на одноразовое использование и положение & в сигнатуре функции. Также обратите внимание, как ссылка была получена в функции main () по другой ссылке.
Передача указателя на функцию
В следующей программе указатель, который на самом деле является адресом объекта с плавающей точкой, отправляется в качестве аргумента функции:
int main ( )
<
float v = 2.5 ;
Обратите внимание на использование и положение * для параметра с плавающей запятой в сигнатуре функции. Как только начинается вычисление функции fn (), делается следующий оператор:
Передача ссылки на функцию
В следующей программе ссылка отправляется в качестве аргумента функции:
int main ( )
<
float v = 2.5 ;
Обратите внимание на использование и положение & для параметра float в сигнатуре функции. Как только начинается вычисление функции fn (), делается следующий оператор:
Передача массива функции
Следующая программа показывает, как передать массив функции:
int fn ( int arra [ ] )
<
return arra [ 2 ] ;
>
В этой программе передается массив. Обратите внимание, что параметр сигнатуры функции имеет объявление пустого массива. Аргументом в вызове функции является только имя созданного массива.
Может ли функция C ++ вернуть массив?
Функция в C ++ может возвращать значение массива, но не может возвращать массив. Компиляция следующей программы приводит к сообщению об ошибке:
int fn ( int arra [ ] )
<
return arra ;
>
Указатель указателя
Указатель может указывать на другой указатель. То есть объект-указатель может иметь адрес другого объекта-указателя. Они по-прежнему должны быть одного типа. Следующий фрагмент кода иллюстрирует это:
В объявлении указателя на указатель используется двойной *. Чтобы вернуть значение последнего заостренного объекта, по-прежнему используется двойной *.
Массив указателей
Следующая программа показывает, как кодировать массив указателей:
Обратите внимание на использование и положение * в объявлении массива. Обратите внимание на использование * при возврате значения в массиве. С указателями указателей задействованы два *. В случае массива указателей об одном * уже позаботились, потому что идентификатор массива является указателем.
Массив строк переменной длины
Строковый литерал — это константа, возвращающая указатель. Массив строк переменной длины — это массив указателей. Каждое значение в массиве является указателем. Указатели — это адреса к ячейкам памяти, они имеют одинаковый размер. Строки разной длины находятся в другом месте памяти, а не в массиве. Следующая программа иллюстрирует использование:
На выходе получается «girl».
Объявление массива начинается с зарезервированного слова «const» для константы; за которым следует «char» для символа, затем звездочка *, чтобы указать, что каждый элемент является указателем. Чтобы вернуть строку из массива, * не используется из-за неявного характера указателя каждой строки. Если используется *, то будет возвращен первый элемент строки.
Указатель на функцию, возвращающую указатель
Следующая программа показывает, как кодируется указатель на функцию, возвращающую указатель:
int * fn ( )
<
int num = 4 ;
int * inter = & num ;
return inter ;
>
int * ( * func ) ( ) = & fn ;
int val = * func ( ) ;
Объявление указателя на функцию, возвращающую указатель, аналогично объявлению указателя на обычную функцию, но перед ним стоит звездочка. Первый оператор в функции main () иллюстрирует это. Чтобы вызвать функцию с помощью указателя, поставьте перед ней *.
Заключение
Чтобы создать указатель на скаляр, сделайте что-нибудь вроде:
* имеет два значения: в объявлении указывает указатель; чтобы что-то вернуть, это значение указанного объекта.
Имя массива — это постоянный указатель на первый элемент массива.
Чтобы создать указатель на функцию, вы можете:
где fn () — функция, определенная в другом месте, а func — указатель.
Чтобы создать ссылку на функцию, вы можете:
где fn () — функция, определенная в другом месте, а refFunc — ссылка.
Когда функция возвращает указатель, возвращаемое значение должно быть получено указателем. Когда функция возвращает ссылку, возвращаемое значение должно быть получено по ссылке.
При передаче указателя на функцию параметр является объявлением, а аргумент — адресом указанного объекта. При передаче ссылки на функцию параметр является объявлением, а аргумент — ссылкой.
При передаче массива функции параметр — это объявление, а аргумент — это имя массива без []. Функция C ++ не возвращает массив.
Для указателя на указатель требуется два * вместо одного, где это необходимо.
Десять возможностей C++11, которые должен использовать каждый C++ разработчик
В данной статье рассматривается ряд возможностей С++11, которые все разработчики должны знать и использовать. Существует много новых дополнений к языку и стандартной библиотеке, эта статья лишь поверхностно охватывает часть из них. Однако, я полагаю, что некоторые из этих новых функций должны стать обыденными для всех разработчиков С++. Подобных статей наверное существует много, в этой я предприму попытку составить список возможностей, которые должны войти в повседневное использование.
#1 — auto
До С++11, ключевое слово auto использовалось как спецификатор хранения переменной (как, например, register, static, extern ). В С++11 auto позволяет не указывать тип переменной явно, говоря компилятору, чтобы он сам определил фактический тип переменной, на основе типа инициализируемого значения. Это может использоваться при объявлении переменных в различных областях видимости, как, например, пространство имен, блоки, инициализация в цикле и т.п.
#2 — nullptr
#3 — range-based циклы
Это полезно, когда вы просто хотите получить элементы массива/контейнера или сделать с ними что-то, не заботясь об индексах, итераторах или кол-ве элементов.
#4 — override и final
Мне всегда не нравились виртуальные функции в С++. Ключевое слово virtual опционально и поэтому немного затрудняло чтение кода, заставляя вечно возвращаться в вершину иерархии наследования, чтобы посмотреть объявлен ли виртуальным тот или иной метод. Я всегда использовал этой ключевое слово так же и в производных классах (и поощрял людей, кто так делал), чтобы код был понятнее. Тем не менее, есть ошибки, которые могут все таки возникнуть. Возьмем следующий пример:
Вот другая возможная ошибка: параметры одни и те же, но в базовом классе метод константный, а в производном — нет.
Теперь это вызовет ошибку при компиляции (точно так же, если бы вы использовали override во втором примере):
#5 — строго-типизированный enum
У «традиционных» перечислений в С++ есть некоторые недостатки: они экспортируют свои значения в окружающую область видимости (что может привести к конфликту имен), они неявно преобразовываются в целый тип и не могут иметь определенный пользователем тип.
#6 — интеллектуальные указатели
Первое объявление эквивалентно следующему:
make_shared — это функция, имеющая преимущество при выделении памяти для совместно используемого объекта и интеллектуального указателя с единственным выделением, в отличие от явного получения shared_ptr через конструктор, где требуется, по крайней мере, два выделения. Из-за этого может произойти утечка памяти. В следующем примере как раз это демонстрируется, утечка может произойти в случае, если seed() бросит исключение.
#7 — лямбды
#8 — non-member begin() и end()
Давайте возьмем, например, предыдущий пример, где я выводил вектор и затем искал первый нечетный элемент. Если std::vector заменить С-подобным массивом, то код будет выглядеть так:
С begin() и end() его можно переписать следующим образом:
#9 — static_assert и классы свойств
static_assert проверяет утверждение во время компиляции. Если утверждение — истина, то ничего не происходит. Если — ложь, то компилятор выводит указанное сообщение об ошибке.
Однако, при компиляции не возникнет ошибки, если написать следующее:
#10 — семантика перемещения
Это — еще одна важная тема, затронутая в С++11. На эту тему можно написать несколько статей, а не абзацев, поэтому я не буду сильно углубляться.
C++11 ввел понятие rvalue ссылок (указанных с &&), чтобы отличать ссылка на lvalue (объект, у которого есть имя) и rvalue (объект, у которого нет имени). Семантика перемещения позволяет изменять rvalues (ранее они считались неизменными и не отличались от типов const T&).
Класс/структура раньше имели некоторые неявные функции-члены: конструктор по умолчанию (если другой конструктор не определен), конструктор копирования и деструктор. Конструктор копирования выполняет поразрядное копирование переменных. Это означает, что если у вас есть класс с указателями на какие-то объекты, то конструктор копирования скопирует указатели, а не объекты, на которые они указывают. Если вы хотите получить в копии именно объекты, а не лишь указатели на них, вы должны это явно описать в конструкторе копирования.
Конструктор перемещения и оператор присваивания перемещения — эти две специальные функции принимают параметр T&&, который является rvalue. Фактически, они могут изменять объект.
Следующий пример показывает фиктивную реализацию буфера. Буфер идентифицируется именем, имеет указатель (обернутый в std::unique_ptr ) на массив элементов типа Т и переменную, содержащую размер массива.
Конструктор копирования по умолчанию и оператор присваивания копии должны быть вам знакомы. Новое в С++11 — это конструктор перемещения и оператор присваивания перемещения, Если вы выполните этот код, то увидите, что когда создается b4 — вызывается конструктор перемещения. Кроме того, когда b1 присваивается значение — вызывается оператор присваивания перемещения. Причина — значение, возвращаемое функцией getBuffer() — rvalue.
Что означают эти функции?
Добавлено через 40 минут
ещё сразу вопрос, почему в этой программе нет функции memset() для обнуления памяти
Объяснить, что означают строки кода
float res = 0; res += f(a); res += f(b); res += f((a + b)/2); res /=3; объясните.
3)Зачем обнулять? Вы выделили диапазон памяти для массива и сразу же его заполнили.
Добавлено через 1 минуту
Это работает?
Adrian_One, всё работает, я просто спросил. Это язык Си.
Добавлено через 8 минут
Adrian_One, на счёт memset().. у нас в методичке просто сказано:
после использования функции malloc всегда проверять, успешно ли выделилась память! (проверять указатель на NULL).
После выделения память всегда нужно инициализировать! (memset())
вообще-то это одномерный массив, а двумерным он «становится» из-за магии указателей (a + i * m + j) и *(a + i * m + j) в циклах.
2 гетчара из-за кривизны функции scanf(), которая любит оставлять после себя символ ‘\n’ в потоке ввода.
я не это имел в виду, к двумерному массиву int ** a; вы можете обращаться стандартным способом: a[i][k], однако к массиву выделенному таким образом данная «магия» не применима, поскольку он является одномерным, т.е. int * a; и обращаться к нему получится только как a[i] без доступа ко «второму измерению» штатными средствами. Для чего используется пляска с бубном и указателями.
Вообще какая-то странная у вас тяга к исчерпывающим ответам, так и давали бы сами действительно исчерпывающий ответ, к которому никаких комментариев не нужно.
Пришел, увидел, обобщил: погружаемся в Java Generics
Java Generics — это одно из самых значительных изменений за всю историю языка Java. «Дженерики», доступные с Java 5, сделали использование Java Collection Framework проще, удобнее и безопаснее. Ошибки, связанные с некорректным использованием типов, теперь обнаруживаются на этапе компиляции. Да и сам язык Java стал еще безопаснее. Несмотря на кажущуюся простоту обобщенных типов, многие разработчики сталкиваются с трудностями при их использовании. В этом посте я расскажу об особенностях работы с Java Generics, чтобы этих трудностей у вас было поменьше. Пригодится, если вы не гуру в дженериках, и поможет избежать много трудностей при погружении в тему.
Работа с коллекциями
Предположим, банку нужно подсчитать сумму сбережений на счетах клиентов. До появления «дженериков» метод вычисления суммы выглядел так:
С появлением Generics необходимость в проверке и приведении типа отпала:
Во второй строчке проверки необходимость тоже отпадала. Если потребуется, приведение типов ( casting ) будет сделано на этапе компиляции.
Принцип подстановки
Тип | Подтип |
Number | Integer |
List | ArrayList |
Collection | List |
Iterable | Collection |
Примеры отношения тип/подтип
Вот пример использования принципа подстановки в Java:
Ковариантность, контравариантность и инвариантность
Но если мы попытаемся изменить содержимое массива через переменную arr и запишем туда число 42, то получим ArrayStoreException на этапе выполнения программы, поскольку 42 является не строкой, а числом. В этом недостаток ковариантности массивов Java: мы не можем выполнить проверки на этапе компиляции, и что-то может сломаться уже в рантайме.
«Дженерики» инвариантны. Приведем пример:
Wildcards
Всегда ли Generics инварианты? Нет. Приведу примеры:
Это ковариантность. List — подтип List
extends B — символ подстановки с указанием верхней границы super B — символ подстановки с указанием нижней границы где B — представляет собой границу 2. Почему нельзя получить элемент из списка ниже? The Get and Put Principle или PECS (Producer Extends Consumer Super)Особенность wildcard с верхней и нижней границей дает дополнительные фичи, связанные с безопасным использованием типов. Из одного типа переменных можно только читать, в другой — только вписывать (исключением является возможность записать null для extends и прочитать Object для super ). Чтобы было легче запомнить, когда какой wildcard использовать, существует принцип PECS — Producer Extends Consumer Super. и Raw типыЕсли мы опустим указание типа, например, как здесь: Если мы попытаемся вызвать параметризованный метода у Raw типа, то компилятор выдаст нам предупреждение «Unchecked call». Если мы попытаемся выполнить присваивание ссылки на параметризованный тип Raw типу, то компилятор выдаст предупреждение «Unchecked assignment». Игнорирование этих предупреждений, как мы увидим позже, может привести к ошибкам во время выполнения нашего приложения. Wildcard CaptureПопробуем теперь реализовать метод, выполняющий перестановку элементов списка в обратном порядке. Более подробно о Wildcard Capture можно прочитать здесь и здесь. ВыводПеременные типаВот еще пример из класса Enum: Multiple bounds (множественные ограничения)ВыводПеременная типа может быть ограничена только сверху одним или несколькими типами. В случае множественного ограничения левая граница (первое ограничение) используется в процессе затирания (Type Erasure). Type ErasureНа скриншоте ниже два примера программы: Разница между ними в том, что слева происходит compile-time error, а справа все компилируется без ошибок. Почему? Reifiable типыПочему информация об одних типах доступна, а о других нет? Дело в том, что из-за процесса затирания типов компилятором информация о некоторых типах может быть потеряна. Если она потерялась, то такой тип будет уже не reifiable. То есть она во время выполнения недоступна. Если доступна – соответственно, reifiable. Решение не делать все обобщенные типы доступными во время выполнения — это одно из наиболее важных и противоречивых проектных решений в системе типов Java. Так сделали, в первую очередь, для совместимости с существующим кодом. За миграционную совместимость пришлось платить — полная доступность системы обобщенных типов во время выполнения невозможна. И еще одна задачка. Почему в примере ниже нельзя создать параметризованный Exception? Каждое catch выражение в try-catch проверяет тип полученного исключения во время выполнения программы (что равносильно instanceof), соответственно, тип должен быть Reifiable. Поэтому Throwable и его подтипы не могут быть параметризованы. Unchecked WarningsКомпиляция нашего приложения может выдать так называемый Unchecked Warning — предупреждение о том, что компилятор не смог корректно определить уровень безопасности использования наших типов. Это не ошибка, а предупреждение, так что его можно пропустить. Но желательно все-так исправить, чтобы избежать проблем в будущем. Heap PollutionКак мы упомянули ранее, присваивание ссылки на Raw тип переменной параметризованного типа, приводит к предупреждению «Unchecked assignment». Если мы проигнорируем его, то возможна ситуация под названием » Heap Pollution » (загрязнение кучи). Вот пример: В строке (1) компилятор предупреждает об «Unchecked assignment». Рассмотрим еще один пример: Java разрешает выполнить присваивание в строке (1). Это необходимо для обеспечения обратной совместимости. Но если мы попытаемся выполнить метод add в строке (2), то получим предупреждение Unchecked call — компилятор предупреждает нас о возможной ошибке. В самом деле, мы же пытаемся в список строк добавить целое число. ReflectionХотя при компиляции параметризованные типы подвергаются процедуре стирания (type erasure), кое-какую информацию мы можем получить с помощью Reflection. С появлением Generics класс java.lang.Class стал параметризованным. Рассмотрим вот этот код: ВыводЕсли информация о типе доступна во время выполнения программы, то такой тип называется Reifiable. К Reifiable типам относятся: примитивные типы, непараметризованные типы, параметризованные типы с неограниченным символом подстановки, Raw типы и массивы, элементы которых являются reifiable. Игнорирование Unchecked Warnings может привести к «загрязнению кучи» и ошибкам во время выполнения программы. Reflection не позволяет получить информацию о типе объекта, если он не Reifiable. Но Reflection позволяет получить информацию о типе возвращаемого методом значения, о типе аргументов метода и о типе полей класса. Type InferenceТермин можно перевести как «Вывод типа». Это возможность компилятора определять (выводить) тип из контекста. Вот пример кода: С появлением даймонд-оператора в Java 7 мы можем не указывать тип у ArrayList : Предположим у нас есть вот такой класс, который описывает связный список: Результат обобщенного метода List.nil() может быть выведен из правой части: Механизм выбора типа компилятором показывает, что аргумент типа для вызова List.nil() действительно String — это работает в JDK 7, все хорошо. Выглядит разумно, что компилятор также должен иметь возможность вывести тип, когда результат такого вызова обобщенного метода передается другому методу в качестве аргумента, например: В JDK 7 мы получили бы compile-time error. А в JDK 8 скомпилируется. Это и есть первая часть JEP-101, его первая цель — вывод типа в позиции аргумента. Единственная возможность осуществить это в версиях до JDK 8 — использовать явный аргумент типа при вызове обобщенного метода: Вторая часть JEP-101 говорит о том, что неплохо бы выводить тип в цепочке вызовов обобщенных методов, например: Но данная задача не решена до сих пор, и вряд ли в ближайшее время появится такая функция. Возможно, в будущих версиях JDK необходимость в этом исчезнет, но пока нужно указывать аргументы вручную: После выхода JEP 101 на StackOverflow появилось множество вопросов по теме. Программисты спрашивают, почему код, который выполнялся на 7-й версии, на 8-й выполняется иначе – или вообще не компилируется? Вот пример такого кода: Посмотрим на байт-код после компиляции на JDK1.8: А теперь байт-код после компиляции на JDK1.7 – то есть на Java 7: Чтобы избежать таких проблем, Oracle выпустил руководство по переходу с JDK1.7 на JDK 1.8 в котором описаны проблемы, которые могут возникнуть при переходе на новую версию Java, и то, как эти проблемы можно решить. Например если вы хотите, чтобы в коде выше после компиляции на Java 8 все работало так же, как и на Java 7, сделайте приведение типа вручную: ЗаключениеНа этом мой рассказ о Java Generics подходит к концу. Вот другие источники, которые помогут вам в освоении темы:
|