push pull усилитель что это такое
Однотакт и двухтакт: различия и особенности
Не раз мне приходилось слышать вопрос о том, какой тип лампового усилителя лучше, и в чём заключаются отличия между однотактом и двухтактом? Вопрос этот настолько технического плана, насколько и философского. Ибо рассуждение только с одной позиции кажется заранее обречённым на провал. Потому что никакие технические подробности не разрешат проблему индивидуальных особенностей восприятия каждого человека.
На просторах рунета полно противоположных суждений о том, что же всё-таки лучше: single-ended или push-pull? Сторонники двух враждующих лагерей ударяются в самые невозможные крайности со всеми вытекающими последствиями. Значительно меньше адекватных статей и обзоров о разной специфике этих двух типов. А схемотехнических решений примерно поровну.
Мне хотелось бы описать основные особенности звучания этих двух типов, исходя из собственных субьективных ощущений. Без предвзятых мнений и ссылок на статьи авторитетных экспертов в области аудио, о которых я мало чего знаю, по правде сказать.
Исторически изначально появились однотактные схемы, которые применялись в ламповых радиоприёмниках, радиостанциях и телевизорах. Среди очевидных преимуществ однотакта можно выделить:
С развитием медиа-индустрии людям понадобилась мощная аппаратура для озвучивания больших залов и кинотеатров. Однотактная схемотехника не справлялась с такими запросами. Количество ламп и их размеры увеличивались, а КПД оставался сравнительно низким. Да и сложности с изготовлением выходных трансформаторов для таких схем никто не отменял. Плюс ещё и тепла выделяли такие агрегаты – будь здоров. Наверное, батареи в аппаратных киномехаников точно не требовались. Как и в комнатах современных рядовых майнеров (за исключением зимнего периода в России).
Так вот, потом схемотехники взяли и придумали два плеча усиления. Когда звуковой сигнал расщепляется на две полуволны, усиливается по-отдельности, и затем вновь собирается воедино выходным трансформатором. Такой вариант сразу дал несколько преимуществ:
Монтаж ламповых усилителей на советских и зарубежных лампах
Мне довелось собрать три двухтактных, и один однотактный УМЗЧ. Если выразиться точнее: двухтактный моно-усилитель для электрогитары с фиксированным смещением на выходных лампах 6п14п (фото слева), двухтактный стерео-усилитель с автосмещением на лампах 6п14п и двухтактный стерео-усилитель с фиксированным смещением на выходных лампах 6п3с. Однотактная схема сделана на буржуйских лампах 6SL7 (Tungsol) и KT88 (Electro-harmonics).
Потребность в хорошем ламповом звуке для электрогитары, собственно, и побудила меня к «лампостроительству». Потом захотелось собрать усилок для стереокомплекса, сделать ламповый преамп на 6н2п, купить виниловый проигрыватель и задуматься о необходимости фонокорректора. Читая модные аудио-журналы, твёрдо решил поменять совдеповскую акустику «S-90» на двуполосные полочники от омской компании «Acoustic Lab» на динамиках Ciare. Обзавёлся дешёвеньким cd-проигрывателем «Iceberg», который играет на порядок выше звуковой карты «SB Audigy Player» и компьютерного dvd-привода. Ну а спаянный под конец школьных лет усилитель на микросхемах TDA7294 озвучивал фонограммы в моей комнате аж с осени 2002 года.
Второй ламповый двухтакт на 6п14п предназначался уже для прослушивания аудио. Звук вкатил сразу своим «объёмом, тёплом и атмосферой». Да, как бы это не казалось смешным после многочисленных словесных излияний в пользу лампы. Но так оно и было на самом деле. После TDA7294 и отечественных усилителей типа «Амфитона», «Радиотехники» и «Одиссея». Совсем иной характер звука, потрясающая динамика и передача высоких частот. “Dark side of the moon” и Stanley Clark открыли мне во всех подробностях прелести лампового звучания. Сопровождалось это стойким ощущением вынутых из ушей парой бируши. Тарелочки, панорама, поющая середина – очевидные отличительные черты лампового звука от транзисторного. И это сразу бросается в глаза (если не сказать – в уши). С момента вступления группы во вступлении пинк-флойдовской “Breathe”. Схема двухтактника 6п14п с авто- или фиксированным смещением прекрасно подойдёт для первого знакомства начинающим радиолюбителям.
В 2012 году у меня заказали сборку двухтакта 6п3с. Выходные трансформаторы на этот раз пришлось намотать самому на самодельном приспособлении. На омской оптовке купил какие-то трансы, размотал их и намотал новые по грамотным расчётам одного омского инженера. Количество витков, провод и железо рассчитывались по формулам конкретно под двухтактник на 6п3с.
Звучал этот аппарат намного взрослее, мощнее и объёмнее предыдущего. Всё-таки размеры баллонов имеют немаловажное значение. Это и понятно, потому что по мощности 6п3с в двухтакте выдаёт примерно 24 Вт, а 6п14п – 14 Вт. Для маленькой комнаты 3.5/3 метра – более чем достаточно. 6п3с может запросто озвучить зал среднестатистической городской квартиры. Впрочем, для комфортного прослушивания музыки вполне достаточно мощности и в 10 Вт, но существует ещё такое понятие, как запас мощности по динамическому диапазону. То есть, если усилитель играет даже на маленькой громкости, то сразу становится понятно, что «под капотом» у него спрятаны большие мускулы. А с запасом в 10 Вт есть вероятность появления неприятных искажений на крайних положениях ручки громкости. Однако, это касается скорее транзисторных, нежели ламповых усилков.
Все четыре ламповых агрегата делались на диодной сборке в питании. С кенотронами так почему то и не связался. Питание подавалось через стандартную схему раздельного включения накала и анодного напряжения. Монтаж всех сигнальных цепей выполнялся проводом МГТФ с содержанием серебра.
Звучание однотактного аппарата (single ended)
Первые впечатления от прослушивания однотакта – звуковая картина намного более детально прорисовывается по средним и высоким частотам. Струнные и духовые инструменты, распределение источников звука по панораме, артикуляция и объёмы – просто потрясающие. Можно услышать все детали звукоизвлечения у гитары и контрабаса. Скольжение пальцев по струнам слышно так, будто исполнитель сидит в метре от тебя. Этот аппарат как бы «допевает» музыкальный материал и привносит в окончательную аранжировку свой неповторимый почерк. Двухтакт же даёт больше панча и звукового давления по низам. Чего, как мне показалось, немного не хватает у однотакта. Но это можно исправить каким-нибудь предварительным усилителем после cd-проигрывателя.
Однотакты прекрасно воспроизводят звучание как симфонического оркестра, так и малые формы в виде камерной музыки и джаза. Словом, где требуется детальная прорисовка музыкальной картины и передача пространственного расположения источников звука – там своё назначение однотакты выполняют на все 100%.
Электроника для всех
Блог о электронике
Основы на пальцах. Часть 4
Но диоды, резисторы, транзисторы и конденсаторы это так, лишь обвязка. Особо на них не развернешься (нет, маньяки, конечно могут, но габариты устройств там будут феерические). Самое вкусное нас поджидает в микросхемах 🙂
Делятся они на цифровые и аналоговые. Для начала кратко пробегусь по цифровым микросхемам.
Миром правит цифра!
Во избежания путаницы смыслов, в терминологии ключей и транзисторов принято следующее соглашение. Ключ считается открытым или закрытым для протекания тока, как кран на трубе. С точки зрения же механического исполнения он может быть замкнут или разомкнут. Так что открыт = замкнут, закрыт = разомкнут. И не следует путать с англоязычной нотацией, где Open = открыт если речь идет о транзисторе или электронном ключе и Open = разомкнут если речь идет о механическом рубильнике. Там Open-Close следует рассматривать в общем контексте текущего случая. Велик и могуч русский язык! =) |
О микросхемах дискретной логики И, ИЛИ, НЕ я рассказывать не буду, каждую описать, так это справочник не на одну сотню страниц будет. Да и постепенно они уходят в прошлое, вытесняемые контроллерами и программируемыми матрицами. Скажу лишь главное – работают они по жесткой таблице истинности, которую можно найти в соответствующем datasheet.
Испльзование операционных усилителей |
Если от операционного усилителя надо получить усиление, то нужно как то обуздать его бешеный коэффициент. Для этого ему добавляют отрицательную обратную связь. Т.е. берут и с выхода подают сигнал на отрицательный вход, подмешивая его к основному входному сигналу. В итоге, выходной сигнал вычитается из входного. А коэффициент усиления становится равным отношению резисторов на входе и выходе (смотри схему).
Но это далеко не все фишки которые умеет делать операционный усилитель. Если в обратную связь сунуть конденсатор, то получим интегратор, выдающий на выходе интеграл от функции входного сигнала. А если скомбинировать конденсатор с резистором, да индуктивность на вход… В общем, тут можно книгу писать, а занимается этими занятными процессами отдельная наука – автоматическое управление. Кстати, именно на операционных усилителях сделаны аналоговые компьютеры, считающие дифференциальные уравнения с такой скоростью, что все цифровые компы нервно курят в уголке.
Спасибо. Вы потрясающие! Всего за месяц мы собрали нужную сумму в 500000 на хоккейную коробку для детского дома Аистенок. Из которых 125000+ было от вас, читателей EasyElectronics. Были даже переводы на 25000+ и просто поток платежей на 251 рубль. Это невероятно круто. Сейчас идет заключение договора и подготовка к строительству!
А я встрял на три года, как минимум, ежемесячной пахоты над статьями :)))))))))))) Спасибо вам за такой мощный пинок.
Пушпульный преобразователь. Еще один взгляд
В статье, представляющей собой сокращенный перевод [1], рассмотрен двухтактный пушпульный преобразователь, работающий в режиме управления по напряжению. Даны рекомендации, позволяющие обеспечить устойчивость работы преобразователя в этом режиме. Названы и обоснованы области применения данного решения, и показаны преимущества по сравнению с преобразователями с иной топологией.
Двухтактная схема в пушпульных, полумостовых и мостовых преобразователях позволяет получить более высокую эффективность преобразования энергии и большую плотность мощности по сравнению с однотактными схемами, такими как обратноходовые и прямоходовые преобразователи. Поэтому двухтактная топология популярна во многих приложениях, особенно в телекоммуникациях и автоэлектронике.
Разработчики, хорошо знакомые с двухтаткными схемами, знают, что режим управления по току обычно применяется для пушпульных и мостовых схем, тогда как режим управления по напряжению, как правило, используют в полумостовых схемах. Двухтактный преобразователь склонен к насыщению сердечника трансформатора. Любая асимметрия вольтсекундной характеристики между двумя фазами работы приводит к асимметрии магнитного потока, что вызывает возрастание постоянного тока.
В полумостовой схеме один вывод первичной обмотки трансформатора соединен с центральной точкой конденсаторного делителя входного напряжения, и несимметричность вольтсекундной характеристики приводит к смещению центральной точки конденсаторного делителя либо к земле, либо к входному напряжению. Режим управления по току компенсирует эту тенденцию, и потенциал центральной точки возвращается к исходному уровню.
Если длительность одной фазы дольше другой в режиме управления по напряжению в полумостовой схеме, то приложенное к трансформатору напряжение уменьшается, т.к. конденсатор разряжается больше, и напряжение на нем падает. Таким образом происходит регулирование вольтсекундной характеристики. Поэтому смещение потенциала центральной точки конденсаторного делителя играет роль отрицательной обратной связи и предотвращает насыщение трансформатора. Таким же образом необходимо ввести и отрицательную обратную связь в двухтактном преобразователе при работе в режиме управления по напряжению.
На практике подобные случаи почти не встречаются, т.к. помимо одинакового времени включения в фазах необходимо еще и совпадение сопротивлений DCR и RDS(ON) в обеих частях схемы. Также из-за разности в динамических характеристиках ключей (время включения/выключения) неодинаковой оказывается и длительность открытого состояния ключа в каждой фазе. Следует учесть и джиттер генератора сигналов. Все перечисленное приводит к асимметрии фаз и смещению цикла перемагничивания от исходной точки (см. рис. 3). Поэтому токи намагничивания в полуобмотках различны. Если асимметрия фаз не компенсируется, то кривая перемагничивания смещается в сторону насыщения. При этом индуктивность обмотки уменьшается, и ток намагничивания резко возрастает, что приводит к отказу преобразователя.
При режиме управления по току во внутреннем (токовом) контуре управления ток первичной обмотки в каждом цикле сравнивается с сигналом ошибки, и вырабатывается управляющее воздействие, изменяющее вольтсекундную характеристику таким образом, чтобы уравновесить пиковый ток в обеих фазах. Как показано на рисунке 1, ток первичной обмотки складывается из тока намагничивания и тока нагрузки. Поэтому из-за быстрого изменения нагрузки возможна небольшая асимметрия фаз, но обычно она не приводит к сколько-либо существенным последствиям, т.к. величина BPEAK существенно меньше BSAT.
В режиме контроля по напряжению в каждом выходном цикле выходное напряжение сравнивается с заданным. Величина тока намагничивания не используется для выработки управляющего воздействия. Таким образом, режиму управления по напряжению не присуще балансирование рабочей характеристики и возврат частной кривой намагничивания трансформатора в исходное состояние. Следовательно, чтобы избежать насыщения сердечника, необходимо ввести отрицательную обратную связь, которая поможет сбалансировать вольтсекундную характеристику.
Естественно, возникает вопрос: если режим управления по току предотвращает насыщение сердечника трансформатора, то зачем рассматривать режим управления по напряжению для подобного типа преобразователя? И почему мы рассматриваем именно пушпульный преобразователь, а не какой-либо иной?
Ответ достаточно прост. Для ряда приложений характерен широкий диапазон изменений питающих напряжений. Например, в автомобильной электронике при холодном пуске двигателя напряжение может уменьшаться до 6 В, а в рабочем режиме увеличиваться до 15 В. Подобный провал напряжения делает бесперспективным применение мостовой или полумостовой схемы с драйверами верхних ключей. В пушпульном преобразователе оба ключа — нижние, поэтому он отлично подходит для приложений с малым входным напряжением. При малых, близких к нулю значениях токов, режим управления по току становится чувствительным к помехам. Длительность импульсов ШИМ может существенно отличаться от требуемой. Чтобы избежать этих проблем, к линейно изменяющемуся сигналу, используемому для генерации импульсов ШИМ, добавляют дополнительный линейно изменяющийся сигнал, увеличивая тем самым его амплитуду. С одной стороны, это стабилизирует работу ШИМ, но, с другой, усложняет управление и создает ряд проблем.
– При отсутствии или очень малой нагрузке величина дополнительного сигнала более зависит от напряжения, чем от тока, что может привести к неадекватной компенсации и возникновению колебаний.
– При величине заполнения более 50% дополнительный сигнал играет позитивную роль, однако при меньшей величине заполнения вновь возникают те же проблемы, приводящие к появлению колебаний.
Приведенные выше соображения показывают, что режим управления по напряжению в пушпульном преобразователе является привлекательным решением для многих приложений с пониженным входным напряжением и при большом диапазоне изменения нагрузки.
Как уже говорилось, при работе в режиме управления по напряжению в пушпульном преобразователе неизбежно возникает асимметрия фаз. Однако существуют и меры стабилизации, способные устранить этот недостаток.
Воздушный зазор в сердечнике трансформатора увеличивает удельное магнитное сопротивление. Магнитная проницаемость µ сердечника трансформатора обратно пропорциональна удельному магнитному сопротивлению. Таким образом, воздушный зазор уменьшает наклон петли гистерезиса (см. рис. 4) и отдаляет момент насыщения сердечника. Другими словами, введение воздушного зазора позволяет увеличить постоянную составляющую тока намагничивания.
Воздушный зазор — это тоже отличное средство уменьшить влияние разброса магнитных материалов при серийном производстве. Без воздушного зазора индуктивность прямо пропорциональна магнитной проницаемости ферромагнитного сердечника, свойства которого существенно зависят от температуры и характеристик материала сердечника. Последние варьируются в очень широких пределах. Введение воздушного зазора уменьшает зависимость индуктивности от магнитной проницаемости µ ферромагнитного материала и увеличивает стабильность и повторяемость характеристик трансформаторов.
Как показано на рисунке 4, воздушный зазор уменьшает индуктивность, в результате чего возрастает пиковый ток, следовательно, уменьшается эффективность преобразователя. Но в большинстве случаев этот эффект не очень значителен.
Как следует из рисунка 1, вольтсекундная характеристика при пушпульной схеме определяется следующим образом:
Полагая, что длительность одной фазы больше другой на Δt, новое значение тока можно описать выражением:
Увеличение тока приводит к возрастанию мощности, рассеиваемой в MOSFET. Сопротивление RDS(ON) MOSFET имеет положительный температурный коэффициент, и поэтому RDS(ON) также возрастет. После алгебраических преобразований получим:
Из-за возрастания падения напряжения благодаря увеличению RDS(ON) и намагничивающему току уменьшается напряжение, прикладываемое к трансформатору, что, в свою очередь, компенсирует большее время открытия силового ключа в данной фазе. Возникает эффект отрицательной обратной связи, и асимметрия вольтсекундной характеристики уменьшается в течение нескольких циклов переключения. Это приводит к устойчивой работе преобразователя — рабочий цикл перемагничивания укладывается в безопасную зону кривой намагничивания, которая имеет небольшое смещение из-за эффекта подмагничивания (имеется постоянная составляющая в токе намагничивания). На рисунке 3 показан пример, когда рабочий цикл смещен, но находится в пределах безопасной зоны. Постоянная составляющая в намагничивающем токе возникает из-за неодинаковости пиковых токов. Также и добавление балластных резисторов в каждое плечо преобразователя обеспечивает отрицательную обратную связь, но в этом случае значительно возрастают потери, и уменьшается эффективность преобразователя.
В статическом режиме кривая намагничивания пушпульного преобразователя перемещается между первым и третьим квадрантами. Однако при запуске или в результате переходных процессов кривая намагничивания может изменяться от начальной точки. В этом случае при том же приращении ΔB, что и в статическом режиме, сердечник трансформатора может оказаться в зоне насыщения, что приведет к значительному возрастанию тока и выходу преобразователя из строя. Этого можно избежать, вводя мягкий старт и пошаговое ограничение предельного тока, благодаря чему при опасном возрастании тока, возможном в переходных процессах, прервется цикл, и преобразователь перезапустится. Пример схемной реализации пушпульного преобразователя приведен в [1].