combo sfp что такое
Что такое комбо-порты (combo-port)?
Комбинированный порт Gigabit Ethernet представляет собой один порт c двумя разъемами: RJ45 и Mini-GBIC (также называемый SFP).
Одновременно может быть активно только одно соединение: либо “медное” по Ethernet кабелю, либо оптическое через SFP-модуль.
Примечание: Если в разъем SFP комбо-порта вставлен SFP-модуль, то медный порт автоматически отключается.
Связанные материалы
База знаний / F.A.Q
Все управляемые коммутаторы Моха поддерживают технологии Turbo Ring / Turbo Chain. В одном кольце Turbo Ring могут совместно работать любые управляемые коммутаторы Moxa. Также можно комбинировать интерфейсы с различной средой передачи данных (оптика или витая пара).
Встраиваемый коммутатор EOM-104 поддерживает только Turbo Ring и RSTP.
Коммутаторы МОХА поддерживают только SFP-модули МОХА. На уровне прошивки зашиты идентификаторы, поэтому SFP-модули сторонних производителей не подойдут.
Коммутаторы EDS-E приходят на замену коммутаторам EDS серии A. Подробнее о преимуществах новой серии можно узнать по ссылке.
Что касается неуправляемых коммутаторов, то наличие и алгоритм broadcast storm protection зависит от используемой в коммутаторе интегральной схемы, поэтому сказать о всех моделях сразу нельзя. Нужно смотреть наличие функции broadcast storm protection в спецификации на коммутатор.
Все неуправляемые коммутаторы MOXA не вносят изменений в тег VLAN и пропускают кадры с тэгами.
Некоторые старые коммерческие коммутаторы отбрасывали тегированные кадры. Сейчас это уже не актуально.
MTBF (среднее время между отказами) является индикатором надежности.
Для расчета значения MTBF MOXA использует стандарт Telcordia (ранее известный как Bellcore).
Значения MTBF можно посмотреть в карточке товара на нашем сайте или в спецификации на оборудование.
Вы также можете получить официальный отчет MTBF, направив обращение на нашу почту russia@moxa.pro
О стандарте Telcordia
Метод основан на военном стандарте MIL-HDBK 217, но с изменениями и дополнениями для учёта параметров, полученных в режиме реальной коммерческой эксплуатации оборудования, и при этом также содержит обновленную информацию о надежности компонентов. Методика сфокусирована на прогнозировании надёжности системы с учётом характеристик отдельных составляющих путём присвоения различных значений интенсивности отказов каждому электронному компоненту, а также присвоением соответствующих значений интенсивности отказов для характерных стрессовых условий (например – температуры), определённых на основании анализа результатов стрессовых испытаний.
Хотя значение MTBF является показателем надежности, тем не менее, оно не отражает предполагаемый срок эксплуатации изделия.
В данном вопросе приводится разъяснение для протокола PROFINET, но это также верно и для протоколов Ethernet/IP и Modbus TCP.
Да, коммутатор MOXA с возможностью подключения резервного источника питания может быть запитан от двух источников питания с разным напряжением.
Например, вы можете подключить источник питания 12 В постоянного тока к PWR1 и источник питания 24 В постоянного тока к PWR2. Коммутатор автоматически определит, какой источник питания обеспечивает наибольшее напряжение, и будет использовать этот источник в качестве основного источника питания.
Тем не менее, несмотря на то, что коммутаторы MOXA поддерживают входное напряжение от 12 до 48 В, мы просим Вас избегать использования источника питания, близкого к нижнему пределу (12 В постоянного тока) или верхнему пределу (48 В постоянного тока). Это нужно для того, чтобы предотвратить выход коммутатора из строя в случае превышения допустимого напряжения выше 48 В или нестабильной работы в случае, если будет падение напряжения ниже 12 В. Мы настоятельно рекомендуем использовать источник питания 24 В постоянного тока.
Протокол резервирования Turbo Ring может быть быстро настроен с помощью DIP-переключателей, расположенных на корпусе коммутатора.
Да, SFP-модули MOXA можно менять без отключения питания коммутатора, т.е. «на горячую».
При использовании одномодовых оптоволоконных трансиверов особенно важно рассчитать оптический бюджет ВОЛС, во избежание их выхода из строя (выгорания).
Рассмотрим пример расчёта для устройства EDS-518E-SS-SC-4GTXSFP.
Каждый из 8 портов коммутатора EDS-P510A-8PoE-2GTXSFP может выдавать до 30 Вт мощности в режиме PoE+. И до 36 Вт в режиме High PoE для питания промышленных устройств с высоким потреблением энергии.
Бюджет мощности для PoE коммутатора EDS-P510A-8PoE-2GTXSFP составляет 240 Вт.
Это значит, что Вы можете использовать все 8 портов одновременно в режиме PoE+. Соответственно, если есть порты High PoE (36Вт), то на какие-то порты мощности не хватит.
Все управляемые коммутаторы Moxa поддерживают протоколы DHCP/BootP и RARP для автоматической настройки IP-адресов подключенных устройств.
Есть два режима работы: Автоматическое назначение IP-адреса и DHCP Relay Agent.
Что означает комбо порт для Ethernet коммутатора?
Charlene
Купить FS коммутаторы L3 для ЦОД
«Когда я впервые увидел коммутатор Ethernet, меня смутили различные порты на нем, особенно комбо-порты». Combo-порты может беспокоить многих новичков в сети, поскольку внешний вид комбо-интерфейсов аналогичен обычным Ethernet-портам. Итак, что такое сетевой комбо-порт? Как отличить Combo-порты от Ethernet портов на коммутаторе Ethernet? Как использовать комбо-порт SFP? Ряд вопросов приходит все время. Здесь мы сделаем всестороннее введение в комбо-порт и объясним все вопросы для вас.
Что такое комбо-порт?
Combo-порты, также известный как интерфейс оптоэлектронного мультиплексирования, представляет собой фотоэлектрический композитный порт (панель) с двумя видами интерфейсов Ethernet (порт RJ45 и порт SFP) на коммутаторе Ethernet. Другими словами, это составной порт, который может поддерживать два разных физических устройства и использовать одну и ту же коммутационную матрицу и номер порта. Что отличает эти порты от индивидуальных, так это то, что они привязаны к одной и той же коммутационной матрице. Однако два разных порта нельзя использовать одновременно. То есть, когда порт RJ45 активирован, порт SFP автоматически отключается, и наоборот.
Обычно порт RJ45 соединен витыми парами, а для порта SFP требуются медные или оптические модули и соединительные кабели. Очевидная заслуга комбинированного интерфейса заключается в том, что вы по-прежнему обладаете большей гибкостью с точки зрения выбора типа подключения к сети, не занимая слишком много места. В качестве примера рассмотрим коммутатор FS S3900-24F4S, он имеет 20 SFP 1000BASE-X портов и 4 combo-порта. Поэтому коммутатор может быть настроен на 24 порта SFP или 20 портов SFP и 4 порта RJ45.
Рисунок 1: Combo-порты на коммутаторе S3900-24F4S
Типы комбо-портов
Существует два типа комбинированных интерфейсов: один комбо-порт и двойной комбо-порт, предназначенные для простого управления сетью Ethernet.
Единый комбо-порт
Двойной комбо-порт
Комбо-порт vs. SFP порта
Комбинированный интерфейс имеет электрический порт и оптический порт. Электрический порт и соответствующий ему оптический порт логически мультиплексированы. Порты RJ45 Ethernet обычно используются для подключения коммутаторов на расстоянии более 100 м друг от друга, в то время как порты SFP предназначены для более длинных оптоволоконных соединений в соответствии с типами оптоволокна. Вы можете выбрать, какой из них использовать в соответствии с вашими требованиями к сети.
Порт SFP (интерфейс small form-factor hot-pluggable), также называемый мини-GBIC портом, предназначен для передачи гигбитных данных. Порты SFP могут поддерживать как медные, так и оптические каналы. Независимо от оптического порта или соединения электрического порта, единственным отличием является физический уровень. Когда модуль SFP модуль SFP с интерфейсом RJ45 вставлен в порт SFP, медные кабели Ethernet (Cat5/Cat5e/Cat6) обычно используются для передачи данных. А модуль SFP и патч-корд LC необходимы для передачи по оптоволокну на большие расстояния.
Правила использования комбо-портов
1. Вы можете использовать оптические порты или электрические порты комбо-порты, но не оба одновременно.
2. Слот SFP имеет приоритет при подключении как порта витой пары, так и слота SFP пары комбинированного интерфейса к сетевым устройствам.
3. Слот SFP становится активным, когда модуль SFP устанавливает соединение с сетевым устройством.
4. Порт для витой пары и слот SFP пары комбо-портов имеют одинаковые настройки, такие как назначения виртуальной локальной сети (VLAN), списки контроля доступа и spanning tree.
Заключение
Для комбо-портов на коммутаторе Ethernet необходимо еще раз подчеркнуть, что оптические или электрические порты нельзя использовать одновременно. Обычно combo-порты маркируются поставщиками. Если вы не уверены, вы можете определить комбо-порт на основе идентификатора интерфейса на панели коммутатора. Если два порта имеют одинаковый идентификатор, но подключены к разным средам передачи, эти два порта мультиплексируются как комбо-порт. Из приведенного выше обсуждения, надеюсь, у вас есть общее представление о сетевом комбо-порте.
Как выбрать SFP (SFP+) модуль
SFP (Small Form-factor Pluggable) и SFP+ (Enhanced Small Form-factor Pluggable) – стандарты компактных оптических приемо-передатчиков. Они наиболее востребованы при построении оптоволоконных сетей, по сравнению с трансиверами других типов, поэтому в нашей сегодняшней статье мы будем говорить именно о них.
Что такое SFP (SFP+) модули?
Это позволяет сделать слоты для них универсальными. Большинство устоявшихся производителей сетевого оборудования на сегодняшний день в своих устройствах размещают порты формата SFP+, и предусматривают обратную совместимость, так что в эти слоты чаще всего можно вставлять модули формата SFP. При этом, конечно, SFP трансивер будет работать согласно своим параметрам, а не характеристикам SFP+. Но нужно уточнять, есть ли такая возможность, например, в устройствах MikroTik зачастую поддерживается только SFP+.
Наличие порта для SFP-модулей в концевых маршрутизаторах или коммутаторах позволяет:
Размер разъема стандартного SFP-модуля по габаритам соответствует разъему RJ45, что позволяет в устройстве размером в один юнит (1U) разместить до 48 SFP-разъемов. Большинство производителей в профессиональных устройствах размещают один, два или четыре SFP-разъема, иногда совмещенных попарно с разъемами RJ45 (комбо-порты) для большей универсальности. В последнем случае, одновременная работа обоих портов не допускается, работает тот, который был задействован первым.
Виды SFP и SFP+ модулей
Оптические SFP и SFP+ модули различаются по многим параметрам, основными из которых являются:
Знать основные параметры модуля необходимо для того, чтобы корректно подобрать его под существующую (или строящуюся) сеть.
На более тонких характеристиках, таких, как тип лазера, мощность излучателя, ширина спектральной линии и тому подобных, мы пока останавливаться не будем, хотя при построении сети и подборе совместимых пар модулей они также могут иметь значение.
Пропускная способность оптических модулей
Однако, так как у нас чаще всего используются оптические Ethernet модули, принято говорить о скорости 1 Гбит/сек для SFP и 10 Гбит/сек для SFP+.
На рынке также представлено некоторое количество 100-мегабитных SFP трансиверов, но их востребованность в последнее время все меньше.
Многомодовые и одномодовые
Центральное различие между SFP модулями заключается в том, какого типа оптоволоконный кабель используется – многомодовый (MM, MMF) или одномодовый (SM, SMF). В практическом плане это имеет значение при подборе модулей с учетом типа кабеля в вашей сети, дальности ее пролетов, а также сумм, которые выделяются на ее проведение.
Многомодовый кабель имеет более толстую сердцевину и лучше собирает свет от излучателя. За счет этого многомодовые соединения значительно терпимее к качеству материала, компонентов, излучателей и оборудования. Однако, их серьезным недостатком является ограниченная максимальная длина сегмента кабеля – около 550 метров. Поэтому многомодовые SFP и SFP+ модули используются сравнительно редко, хотя обычно дешевле одномодовых.
Многомодовые и одномодовые SFP и SFP+ модули несовместимы.
Дальность передачи
Многомодовые оптические модули, как мы уже сказали, поддерживают передачу только на расстояние до 550 метров. В маркировке SFP трансиверов это обычо обозначается цифрой 0,5 (к примеру, 0,5LC), есть многомодовые модули с поддержкой еще меньшей дальности.
Максимальная дальность одномодовых оптических трансиверов зависит от форм-фактора:
При этом использование технологий спектрального уплотнения на скоростях до 10 Гбит/сек дополнительно снижает дальность передачи. Для модулей SFP+ WDM, CWDM и т. д. максимальная дальность уже не превышает 60 км.
Д вухволоконные и одноволоконные
SFP и SFP+ модули выпускаются двухволоконные (или «двуглазые» в простонародье) и одноволоконные («одноглазые»).
Существуют и Bi-Di (двунаправленные, одноволоконные) SFP CWDM модули, однако в продаже на украинском рынке их найти проблематично.
Для оптики и для RJ-45
Следует также упомянуть, что помимо оптических, большинство поставщиков SFP-модулей выпускают также варианты модулей SFP и SFP+ с гигабитными портами 1000Base-T (под медный кабель) для увеличения возможностей расширения сетевых устройств с подобными разъемами. Такой модуль позволяет использовать слот под SFP для создания разъема RJ-45 под витую пару, а не под оптику.
Длина волны
SFP-модули осуществляют прием и передачу сигнала на разных длинах волны. Поэтому при подборе пар приемо-передатчиков нужно учитывать этот фактор, не все они будут совместимы между собой.
В обычных и WDM модулях SFP и SFP+:
В модулях CWDM/DWDM:
Здесь используемых длин волн гораздо больше, как раз за счет этого и реализуется спектральное уплотнение и достигается высокая емкость передачи данных по одному волокну. Но об этом подробнее в следующей статье.
На поддерживаемых стандартах Ethernet, типах коннекторов и технологиях спектрального уплотнения мы подробно остановимся в следующей публикации.
Цветовая маркировка модулей
Для того, чтобы визуально отличать разные типы модулей, была придумана цветовая маркировка защелок. Их пластиковые оболочки делают красного, зеленого, желтого, бирюзового и других цветов.
Цветовая маркировка защелок различна у разных производителей
Пример маркировки
К примеру, типичная маркировка модуля выглядит так:
Коротко о совместимости разных типов SFP и SFP+
Стабильная совместная работа непарных модулей не гарантирована, даже если они совпадают по реализуемому стандарту, длине волны и количеству коннекторов. Возможны проблемы даже с совмещением двух модулей от одного производителя из разных линеек либо выпущенных в разные годы. Не исключено повреждение модулей, ошибки приема/передачи, ошибки согласования дуплекса и даже повреждения кабеля.
Крупные производители оборудования, такие как Cisco, HP, Alcatel-Lucent, 3com, Juniper, Dell и прочие во многих случаях искусственно блокируют работу своих маршрутизаторов/коммутаторов с SFP-модулями сторонних производителей, хотя нередко под своей торговой маркой продают модули сторонней разработки.
Для соединения устройств в стойке и стоек между собой выпускаются готовые оптические кабели стекирования, укомплектованные совместимыми SFP-модулями для соединения. Еще одна возможность, реализуемая при помощи стекирующего кабеля – подключение высокопроизводительных сетевых хранилищ.
Коммутаторы ядра сети — что это такое, для чего нужны и как выглядят
О периферийных устройствах написано достаточно много. Это и понятно, потому что большое число задач требует разнообразный парк оборудования: точки доступа, коммутаторы уровня доступа, межсетевые экраны и так далее.
В случае с корпоративной ИТ инфраструктурой все эти компоненты работают на «нижних этажах», обеспечивая доступ пользователей и конечных устройств к сети.
А вот про уровень ядра сети сказано довольно мало. Причина вполне понятна — больших организаций меньше, чем маленьких, поэтому крупных корпоративных сетей также меньше. Попытаемся восполнить этот пробел. Для начала расскажем об общих чертах и потом перейдём к конкретным моделям (описанию и вариантам использования). Помимо общих принципов, разберём конкретные модели по винтикам, (в том числе и буквально — отверткой), чтобы посмотреть, что и как устроено.
Попробуем расколоть этот орешек знаний, чтобы добраться до ядра.
Вступление
Как мы уже писали ранее в статье «Коммутаторы L2, L2+ и L3 — что, когда, куда, откуда, как, зачем и почему?» — корпоративную сеть можно условно разделить на три уровня:
Рисунок 1. Уровни корпоративной сети
Коммутаторы ядра находятся в самом центре корпоративной сети и обеспечивают общую коммутацию (а если необходимо, то и маршрутизацию), связывающие все остальные сегменты.
Разумеется, нельзя каждый уровень рассматривать отдельно от предыдущего.
Общее увеличение трафика на уровне доступа ведёт к дополнительной нагрузке на коммутаторы уровня распределения, что в итоге влияет на загрузку ядра. Разумеется, возможны ситуации, когда всплеск трафика происходит локально в рамках одного сегмента (в переделах одного коммутатора уровня агрегации или даже уровня доступа). Но если имеется общая тенденция к росту трафика и передаваемых объёмов, это всё равно приводит к повышению нагрузки на ядро сети.
Поэтому важно учитывать не только сиюминутные потребности, но и что ждёт в будущем.
Особенности нагрузки в ядре сильно отличаются от нагрузки на уровне доступа. Если коммутатор уровня доступа привязан к работе пользователей (которых может попросту не быть в офисе), то на коммутаторе ядра будет присутствовать трафик обмена данными между серверами, СХД, облачными системами для резервного копирования и т.д. Поэтому коммутаторы ядра необязательно самые быстрые, но уж точно самые надёжные, рассчитанные на долговременную загрузку
Важный нюанс — уровень ядра наиболее критичен к простоям при выполнении технических работ. Выключение и замена одного коммутаторов уровня ядра приводит к бездействию большого числа участников сетевого обмена. Поэтому желание сократить число и продолжительность таких «остановок» вполне объяснимо. Для этого необходимо: во-первых, выбрать оптимальную архитектуру будущей сети, во-вторых, подобрать наиболее подходящие коммутаторы ядра.
Примечание. Учитывая массовый характер закупок, особенно при развёртывании сети с нуля, ошибка при выборе коммутаторов уровня распределения/агрегации и даже уровня доступа тоже может обернуться значительными финансовыми потерями. И хотя масштабы «катастрофы» принято оценивать по количеству простаивающих узлов за выбранный промежуток времени, к выбору оборудования для «младших» уровней следует подходить не менее ответственно.
Особенности коммутаторов ядра
Как уже было сказано выше, в ИТ инфраструктуре корпоративной сети коммутаторы уровня ядра являются центральным звеном, который объединяет другие сегменты (обычно уровня агрегации/распределения, реже — уровня доступа). Через ядро проходит большая часть от всего трафика между клиентами, серверами, Интернет и так далее.
Поэтому главное «умение» ядра сети — не падать при максимальной загрузке. Этот уровень всегда состоит из высокоскоростных коммутаторов и маршрутизаторов, производительных и отказоустойчивых. Немаловажную роль играет «железо», в том числе характеристики коммутирующей матрицы, производительность процессора или контроллер.
Примечание. «Универсалы vs узких профи» Существует мнение, что для высокоскоростной передачи трафика, коммутаторы ядра не должны выполнять какие-либо манипуляции с пакетами, такие как маршрутизация между VLAN, ACL (Access Control List) и так далее — в такой архитектуре все эти функции возложены на коммутаторы уровня агрегации/доступа. Однако построить идеальную инфраструктуру и уложиться в выделенный бюджет удаётся далеко не всегда. Часто на практике используется некий смешанный вариант, при котором уровень ядра и уровень агрегации/доступа является неким общим уровнем «ядра+распределения». Разумеется, с точки зрения классической архитектуры это выглядит как вопиющее отступление от правил, зато с финансовой стороны — вполне разумно.
А теперь кратко, просто и понятными словами
Проще говоря, коммутаторы уровня ядра — это очень надёжные производительные коммутаторы L3 или L2+, которые могут выполнять те или иные задачи, но главное — устойчивая передача трафика. Ниже мы подробно остановимся на некоторых нюансах.
Производительность
Как уже было сказано выше, скорость пересылки пакетов и ёмкость коммутации — важные характеристики для коммутатора ядра в корпоративных сетях. Ядро должно обеспечивать требуемую скорость и пропускную способность.
Хорошая новость — трафик не берётся из ниоткуда. То есть, зная кого, чего и сколько вы собираетесь подключить к сети и какой «толщины» будут внешние каналы, можно спрогнозировать верхнюю и нижнюю цифры по загрузке ядра сети. А дальше уже дело за выбором оборудования.
Разумеется, корпоративная жизнь порой подбрасывает сюрпризы вроде рождения новых бизнес-подразделений «с нуля» или построения новых сегментов вроде приватных облаков. Поэтому резервировать от 20 до 35% запаса производительности «на вырост» и такой же резерв по количеству портов для ядра сети — это совсем неплохая идея. Как было сказано выше, обосновать остановку или временное замедление в работе практический всей корпоративной сети, чтобы заменить коммутатор в ядре — та ещё задачка.
Надёжность оборудования
При проектировании ядра уделяют больше внимания избыточности по сравнению с другими уровнями. Вроде всё понятно: зачем и почему, но давайте посмотрим более детально.
Как было сказано выше, нагрузка на коммутаторы уровня ядра имеет другой характер, нежели уровня доступа. Соответственно, температурное воздействие тоже выше, и самое главное — держится на одной отметке. И это должно учитываться при проектировании системы охлаждения.
Ещё один важный нюанс — электропитание. Наличие двух источников питания — не роскошь, а необходимость. Разумеется, можно использовать дополнительные «хитрые» внешние модули АВР (Автоматический Ввод Резерва) или SmartPDU, которые позволяют переключить подачу энергии на резервную линию, даже если на самом устройстве один блок питания. Но что будет с ядром сети, если единственный блок питания внутри коммутатора выйдет из строя? Нужно ли это проверять?
При наличии второго блока питания, когда один из них выходит из строя, другой немедленно берёт на себя все функции по обеспечению энергоснабжения. То есть стандартная схема: Active-Passive вполне пригодится.
Многое зависит от производителя блока питания и элементной базы. Если внутри всё сделано непонятно из чего и непонятно как — наверное, вообще не стоит устанавливать подобное оборудование, а уж в ядро сети — тем более.
Устойчивость к атакам и пиковым нагрузкам
Поскольку коммутаторы ядра являются центром сети, они должны уметь не только быстро перебрасывать Ethernet кадры, но и обладать расширенной защитой от DDoS с использованием протоколов уровня 2 и 3. И дело тут не только в «злобных хакерах». Криво работающее сетевое приложение может «навести шороху» не меньше, нежели «тёмные рыцари клавиатуры».
Кроме защиты от атак, сама по себе возможность работы при пиковых нагрузках является важной характеристикой. Обычно советуют избегать таких конфигураций, как дотошные списки доступа и фильтрация пакетов, особенно на фоне деградации производительности. Но в любом случае запас по мощности не повредит.
Стек и масштабирование. Агрегирование каналов.
Разумеется, ситуация, когда из-за проблемы с центральным коммутатором не работает крупный сегмент, а то и вся корпоративная сеть — мало кого устраивает. Чтобы избежать ситуаций, когда одно-единственное устройство объединяет большое число подключений и в случае выхода из строя ничто не может взять на себя его функции — используют резервирование и объединяют сетевое оборудование в стек.
Стек — это соединение нескольких физических коммутаторов в один «супер-коммутатор», когда при выходе одного из физических устройств отказоустойчивая схема продолжает работать.
Однако на одной только отказоустойчивости свет клином не сошёлся. Рано или поздно сеть разрастётся и возникнет дефицит вычислительных ресурсов и свободных портов. Даже если вначале были закуплены коммутаторы с хорошим запасом по портам и мощности, всё равно рано или поздно придётся проводить модернизацию. Стек коммутаторов даёт нам возможность добавить в ядро новые устройства, не снимая с эксплуатации старые.
Например, серия XGS4600 поддерживает стек до 4 коммутаторов, а XGS3700 — до 8. Проще говоря, если у вас в ядре присутствует, допустим два коммутатора XGS4600-52F, вы можете удвоить их количество, доведя их число до 4, не прерывая работу сети.
Также полезным выглядит использование отказоустойчивых протоколов, например, VRRP для построения отказоустойчивой схемы маршрутизации.
Крайне важно, чтобы остальные участники сетевого обмена не теряли связь с ядром. Для этого используется агрегирование каналов, когда несколько физических портов на коммутаторе уровня агрегации/распределения объединяются в общий UPLink и подключаются к двум портам на коммутаторах уровня ядра. Таким образом при обрыве подключения на одном из портов, связь всё равно не теряется.
«Quality of Service» (QoS) — является важной функцией, позволяющей обеспечить стабильное прохождение определённых типов трафика. Например, на современных предприятиях требуется видеоконференцсвязь. Такой трафик требует непрерывной передачи голоса и видеоданных, в отличие, например, от просмотра текстовых страниц в формате html. Ещё один пример — резервное копирование, когда данные идут плотным потоком и необходимо успеть всё передать за короткое «окно бэкапа». В таких случаях выручает использование системы приоритетов и ограничение полосы пропускания. То есть — QoS.
Благодаря QoS коммутаторы ядра получают возможность предоставлять разную полосу пропускания различным приложениям в соответствии с характеристиками. По сравнению с трафиком, который не так требователен к полосе пропускания и задержкам во времени (например, электронная почта), критический трафик получит более высокий приоритет, и будет передаваться с высокой скоростью и гарантированно низкой потерей пакетов.
Управление
Для описания основных принципов работы с коммутаторы ядра сети очень даже подходит известная пословица: «Работает? Не трогай!».
Но бывают ситуации, когда трогать нужно, например, при модернизации всей сети, подключения дополнительных сегментов и так далее.
И, разумеется, необходимо вовремя получать данные о работе сетевого оборудования.
Поэтому коммутаторы ядра сети поддерживают различные методы контроля и управления, начиная от SNMP и заканчивая подключением консоли.
Также полезно иметь выделенный порт управления (не объединяемый с передачей данных), который можно подключить в отдельный VLAN или даже коммутатор. Помимо повышения уровня безопасности, это позволяет упорядочить архитектуру сети и сохранить возможность управления даже при резком возрастании трафика через ядро.
Ниже идут описания и ТТХ конкретных моделей от Zyxel. Если не любите, когда производитель в своём же блоге описывает спецификации и возможности своих же устройств и считаете это «сплошной рекламой» — можно сразу перейти в следующий раздел: «Подведение итогов и рекомендации».
Рассмотрим на конкретных моделях
В качестве примера мы выбрали линейку коммутаторов, предназначенных для уровней ядра и агрегации/распределении. Откуда такое двойное назначение? Всё зависит от целей и задач, в первую очередь от архитектуры корпоративной сети. Бывают ситуации, когда на коммутаторы уровня агрегации/распределения ложится нагрузка, сопоставимая с уровнем ядра сети. Например, если активно используется маршрутизация между VLAN, списки доступа (ACL), фильтрация трафика и так далее.
Запас мощности и широкий набор возможностей в любом случае не помешает.
О каких моделях речь?
На сегодняшний день линейка XGS4600 насчитывает 3 коммутатора: XGS4600-32, XGS4600-32F, XGS4600-52F. Основное различие между ними — в количестве и конструкции портов. Ниже приводится таблица, в которой указаны основные различия и общие моменты.
Характеристика | XGS4600–32 | XGS4600–32F | XGS4600–52F |
---|---|---|---|
Общее число портов | 32 | 32 | 52 |
Gigabit SFP | — | 24 | 48 |
100/1000 Mbps | 24 | — | — |
Gigabit combo (SFP/RJ‑45) | 4 | 4 | — |
10-Gigabit SFP+ | 4 | 4 | 4 |
Производительность коммутации (Gbps) | 136 | 136 | 176 |
Скорость пересылки пакетов (Mpps) | 101.1 | 101.1 | 130.9 |
Буфер пакетов (байт) | 4 Мбайт | 4 Мбайт | 4 Мбайт |
Таблица MAC-адресов | 32 Кбайт | 32 Кбайт | 32 Кбайт |
Таблица пересылки L3 | Макс. 8 тыс. записей IPv4; Макс. 4 тыс. записей IPv6 | Макс. 8 тыс. записей IPv4; Макс. 4 тыс. записей IPv6 | Макс. 8 тыс. записей IPv4; Макс. 4 тыс. записей IPv6 |
Таблица маршрутизации | 12 тыс. | 12 тыс. | 12 тыс. |
Число IP интерфейсов | 256 | 256 | 256 |
Flash/RAM | 64 Мб / 1 Гб | 64 Мб / 1 Гб | 64 Мб / 1 Гб |
Ниже мы кратко опишем, почему эти коммутаторы пригодны для использования в качестве ядра сети.
Стек и High Availability
С помощью одного или двух слотов 10-Gigabit SFP+ можно объединить в физический стек до 4 коммутаторов. Также поддерживается динамическая маршрутизация для упрощения обмена данными между подсетями. Эта функция очень удобна для больших отелей, университетов и других компаний, где используется сложная сетевая инфраструктура. Для коммутаторов серии XGS4600 можно приобрести дополнительную лицензию с поддержкой протоколов OSPFv3 и RIPng для динамической маршрутизации IPv6.
XGS4600 Series оборудован гигабитными портами и четырьмя интегрированными слотами 10-Gigabit SFP+.
Другие меры обеспечения надёжности
Помимо объединения в стек, коммутаторы серии хранят два файла конфигурации и два образа микропрограммы. Это своего рода защита от случайных сбоев. Представьте, что закачанный файл микропрограммы оказался повреждён при передаче по сети. Наличие второго файла позволяет решить эту проблему «без лишней крови», просто перезагрузив устройство с рабочей прошивкой.
Примерно такой же алгоритм восстановления, если изменения конфигурации оказались «несовместимы с жизнью». Просто подгружаем другой файл — и «дело в шляпе».
Схема питания — два независимых блока
XGS4600 Series поддерживает резервирование питания по схеме Active-Standby. В случае выхода из строя основного источника питания коммутатор будет работать от резервного источника питания.
Сами блоки питания — от известного производителя DELTA Electronics.
А что с «железом»?
Разумеется, лучше один раз увидеть, чем сто раз услышать (а ещё лучше пощупать своими руками). И мы прямо в офисе вскрыли две модели чтобы посмотреть, что внутри.
Ниже прилагаем несколько фотоснимков, сделанных прямо в офисе Zyxel Россия.
Интересная информация. Zyxel не пытается «поймать» своих клиентов на мелочах. «Хитрые» пломбы, болтики из мягкой стали (у которых шлицы повреждаются даже при самом аккуратном откручивании), голографические наклейки и прочие «уловки» с целью лишить потребителя гарантийного обслуживания — это всё не нужно.
Рисунок 2. Коммутаторы серии XGS4600, вид спереди: вверху — XGS4600-32F, снизу XGS4600-32
Рисунок 3. Коммутаторы серии XGS4600, вид сзади: вверху — XGS4600-32F, снизу XGS4600-32.
Во всех моделях, предназначенных для ядра — два блока питания.
Рисунок 4. Внутреннее устройство коммутатора XGS4600-32.
Правильная компоновка и аккуратный монтаж плат и разъёмов очень важны. У производителя не должно возникать желания «впихать невпихуемое» в небольшой корпус.
Присутствуют мощные радиаторы и блок из трёх вентиляторов. Для коммутаторов ядра сети важно иметь хорошее охлаждение.
Рисунок 5. Коммутатор XGS4600-32 — блоки питания.
Рисунок 6. Коммутатор XGS4600-32. Фрагмент материнской платы с микросхемами памяти.
Рисунок 7. Крупным планом.
Рисунок 8. Внутреннее устройство коммутатора XGS4600-32F.
Рисунок 9. Блок питания коммутатора XGS4600-32F.
Рисунок 10. В правой части расположены UPLINK, порт MGMT для управления коммутатором и консольный порт.
Обратите внимание на выделенный порт управления (OOB) — на панели он показан как MGMT. В отличие от консольного RS-232 (который тоже в наличии) данный порт предназначен для удалённого управления устройством по сети.
Также присутствует индикатор номера коммутатора в стеке — Stack ID.
Различные функции
Как уже было сказано выше, несмотря на то, что основная задача ядра — стабильная работа под нагрузкой, время от времени возникает необходимость управлять трафиком, и это требует определённых инструментов.
Например, поддержка VLAN, а также QoS и списки доступа — довольно полезные функции.
Полный список функций можно посмотреть здесь.
Подведение итогов и рекомендации
Невозможно объять необъятное, поэтому наш рассказ про коммутаторы ядра подходит к концу.
Существует множество факторов, которые определяют, какие коммутаторы ядра наиболее подходят для ядра сети в каждом конкретном случае. Однако существуют некоторые общие рекомендации, которые желательно соблюдать, чтобы избежать длительных простоев сетевой инфраструктуры.
Помимо «голой теории» мы показали, как эти особенности выглядят на примере конкретной реализации. Описанные принципы подходят при оценке любых других коммутаторов уровня ядра сети. Надеемся, это поможет при разработке новых проектов и модернизации уже существующих.