esbl бактерии что это такое
E. coli
Основные факты
Обзор
Бактерия Escherichia coli (E. coli), продуцирующая шигатоксин часто обнаруживается в кишечнике людей и теплокровных животных. Бол ьшинство штаммов E. coli безвредны. Однако некоторые штаммы, такие как энтерогеморрагическая E. coli (STEC), могут вызывать тяжелые болезни пищевого происхождения. Эта бактерия передается человеку, главным образом, при потреблении зараженных пищевых продуктов, таких как сырые или не прошедшие достаточную тепловую обработку продукты из мясного фарша, сырое молоко и загрязненные сырые овощи и ростки.
STEC производит токсины, известные как шига токсины, названные так из-за их сходства с токсинами, производимыми Shigella dysenteriae. Количество бактерий STEC может увеличиваться при температуре от 7°C до 50°С (оптимальная температура 37°С). Количество некоторых бактерий STEC может расти в кислых продуктах с показателем pH вплоть до 4,4, а также в продуктах с минимальной активностью воды (aw) на уровне 0,95.
Симптомы
Симптомы болезней, вызываемых бактериями STEC, включают абдоминальные спазмы и диарею, которая в некоторых случаях может переходить в кровавую диарею (геморрагический колит). Возможны также лихорадка и рвота. Инкубационный период длится от 3 до 8 дней, при средней продолжительности 3-4 дня. Большинство пациентов выздоравливает в течение 10 дней, но у незначительного числа пациентов (особенно детей раннего возраста и пожилых людей) инфекция может приводить к развитию такой представляющей угрозу для жизни болезни, как гемолитический уремический синдром (ГУС). Для ГУС характерны острая почечная недостаточность, гемолитическая анемия и тромбоцитопения (низкий уровень тромбоцитов в крови).
Люди, страдающие от кровавой диареи или тяжелых абдоминальных спазмов, должны обращаться за медицинской помощью. Антибиотики не являются составной частью лечения пациентов с болезнью, вызванной STEC, и могут повышать риск развития ГУС.
По оценкам, ГУС может развиваться у 10 % пациентов с инфекцией STEC, а коэффициент летальности составляет от 3 до 5 %. Во всем мире ГУС является самой распространенной причиной острой почечной недостаточности у детей раннего возраста. Он может приводить к неврологическим осложнениям (таким как конвульсии, инсульт и кома) у 25 % пациентов и к хроническим заболеваниям почек, обычно нетяжелым, примерно у 50 % выживших пациентов.
Источники и передача инфекции
Имеющаяся о STEC информация относится, в основном, к серотипу O157:H7, так как с биохимической точки зрения его можно легко дифференцировать от других штаммов E. coli. Резервуаром этого патогенного микроорганизма является, в основном, крупный рогатый скот. Кроме того, значительными резервуарами считаются другие жвачные животные (такие как овцы, козы и олени), обнаруживаются и другие инфицированные млекопитающие (такие как свиньи, лошади, кролики, собаки, кошки) и птицы (такие как куры и индейки).
E. coli O157:H7 передается человеку, главным образом, в результате потребления в пищу зараженных пищевых продуктов, таких как сырые или не прошедшие достаточную тепловую обработку продукты из мясного фарша и сырое молоко. Загрязнение фекалиями воды и других пищевых продуктов, а также перекрестное загрязнение во время приготовления пищи (через продукты из говядины и другого мяса, загрязненные рабочие поверхности и кухонные принадлежности) также могут приводить к инфицированию. Примеры пищевых продуктов, явившихся причиной вспышек E. coli O157:H7, включают не прошедшие надлежащую тепловую обработку гамбургеры, копченую салями, непастеризованный свежевыжатый яблочный сок, йогурт и сыр, приготовленный из сырого молока.
Все большее число вспышек болезни связано с потреблением в пищу фруктов и овощей (включая ростки, шпинат, латук, капусту и салат), заражение которых может происходить в результате контакта с фекалиями домашних или диких животных на какой-либо стадии их выращивания или обработки. Бактерии STEC обнаруживаются также в водоемах, (таких как пруды и реки), колодцах и поилках для скота. Они могут оставаться жизнеспособными в течение нескольких месяцев в навозе и осадочных отложениях на дне поилок. Так же была зарегистрирована передача инфекции как через зараженную питьевую воду, так и через воды для рекреационного использования.
Близкие контакты людей являются одним из основных путей передачи инфекции (орально-фекальный путь заражения). Были зарегистрированы бессимптомные носители, то есть лица, у которых не проявляются клинические симптомы болезни, но которые способны инфицировать других людей. Период выделения бактерий STEC у взрослых людей длится примерно одну неделю или менее, а у детей этот период может быть более длительным. В числе значительных факторов риска инфицирования STEC отмечается также посещение ферм и других мест содержания сельскохозяйственных животных, где возможен прямой контакт с ними.
Профилактика
Для профилактики инфекции необходимо соблюдать контрольные меры на всех стадиях продовольственной цепи – от производства сельскохозяйственной продукции на фермах до переработки, обработки и приготовления пищевых продуктов как на коммерческих предприятиях, так и в домашних условиях.
В промышленных условиях
Число случаев заболевания можно уменьшить благодаря проведению разнообразных стратегий по снижению риска в отношении мясного фарша (например, обследование животных перед убоем для предотвращения попадания большого количества патогенных микроорганизмов в места для убоя скота). Надлежащая практика убоя скота и соблюдение гигиены снижают уровень загрязнения туш фекалиями, но не гарантируют отсутствия бактерий STEC в продуктах. Для сведения к минимуму микробиологического заражения крайне важно проводить обучение гигиеническим навыкам при обращении с пищевыми продуктами среди работников ферм, скотобоен и предприятий по производству пищевых продуктов. Единственным эффективным способом уничтожения бактерий STEC в пищевых продуктах является бактерицидная обработка, такая как нагревание (например, тепловая обработка или пастеризация) или облучение.
В домашних условиях
Меры для профилактики инфекции E. coli O157:H7 схожи с мерами, рекомендуемыми для профилактики других болезней пищевого происхождения. Основные практические методики надлежащей гигиены пищевых продуктов, приводимые в «Пяти принципах повышения безопасности пищевых продуктов» ВОЗ, могут способствовать предотвращению передачи патогенных микроорганизмов, вызывающих многие болезни пищевого происхождения, а также защищать от болезней пищевого происхождения, вызываемых STEC.
Пятью важнейшими принципами обеспечения более безопасных пищевых продуктов являются:
Эти рекомендации необходимо выполнять во всех случаях, особенно рекомендацию в отношении «надлежащей тепловой обработки продуктов», при которой температура в середине продуктов достигает, по меньшей мере, 70°C. Необходимо тщательно мыть фрукты и овощи, особенно если они употребляются в пищу в сыром виде. По возможности овощи и фрукты следует чистить. Уязвимым группам населения (таким как дети и пожилые люди) следует избегать потребления в пищу сырых или не прошедших надлежащую тепловую обработку мясных продуктов, сырого молока и продуктов, приготовленных из сырого молока.
Настоятельно рекомендуется регулярное мытье рук, в частности перед приготовлением пищи, едой и после посещения туалета, особенно для людей, ухаживающих за детьми раннего возраста, пожилыми людьми и людьми с ослабленным иммунитетом, так как бактерия может передаваться не только через пищевые продукты, воду и при прямых контактах с животными, но и от человека человеку.
Некоторое количество инфекций STEC возникает в результате контакта с водами для рекреационного использования. Поэтому, важно также защищать такие водоемы, равно как и источники питьевой воды, от попадания в них экскрементов животных.
Производители фруктов и овощей
Публикация ВОЗ «Пять важнейших принципов выращивания более безопасных фруктов и овощей», предназначаемая для сельскохозяйственных работников, выращивающих свежие фрукты и овощи для себя, своих семей и для продажи на местных рынках, содержит основные практические методики для предотвращения микробного загрязнения свежей продукции во время посадки, выращивания, сбора урожая и хранения.
Пятью важнейшими принципами выращивания более безопасных фруктов и овощей являются:
Деятельность ВОЗ
ВОЗ проводит научные оценки для контроля пищевых продуктов на присутствие STEC. Эти оценки служат основанием для международных стандартов на пищевые продукты, руководящих принципов и рекомендаций, разрабатываемых Комиссией Кодекс Алиментариус.
В отношении профилактики ВОЗ разработала глобальную стратегию для уменьшения бремени болезней пищевого происхождения. ВОЗ разработала информационное сообщение «Пять основных правил для обеспечения более безопасных пищевых продуктов». Эти пять правил и связанные с ними учебные пособия являются материалами для стран, которые легко использовать, воспроизводить и адаптировать к различным целевым аудиториям.
ВОЗ способствует укреплению систем безопасности пищевых продуктов путем продвижения надлежащей практики производства и просвещения розничных торговцев и потребителей в отношении надлежащего обращения с пищевыми продуктами и предотвращения их загрязнения.
Во время вспышек E. coli, таких как вспышки, имевшие место в Европе в 2011 году, ВОЗ осуществляет поддержку координации в области обмена информацией и сотрудничества с помощью Международных медико-санитарных правил и в рамках Международной сети органов по безопасности пищевых продуктов (ИНФОСАН) во все мире; ВОЗ осуществляет тесное сотрудничество с национальными органами здравоохранения и международными партнерами, обеспечение технической помощи и предоставление последней информации о вспышках болезни.
Esbl бактерии что это такое
В настоящее время четко определены основные серьезные проблемы, связанные с антибиотикорезистентностью бактерий, ответственных за развитие НКИ: MRS A, MRS-КНС, VRE, штаммы грамотрицатсльных палочек, продуцирующих БЛРС (Klebsiella pneumoniae и Е. Coli), мультирезистентные и папрезистентные штаммы энтеробактерий, неферментирующих грамотрицательных палочек А. baumannii и P. aeruginosa, появление штаммов стафилококков и энтерококков, резистентных к ванкомицину и линезолиду (Guideline for Isolation Precautions: Preventing Transmission of Infectious Agents in Healthcare Settings Recommendations of the Healthcare Infection Control Practices).
Термины «мультрезистентность» (МDR, резистентность бактерии к трем классам антибиотиков и более), «экстенсивная или чрезвычайно высокая резистентность» (XDR, резистентность бактерии ко всем классам антибиотиков кроме одного или двух классов) и «панрезистентность» (PDR, резистентность бактерии ко всем классам антибиотиков) все чаще используются в литературе для описания различного уровня антим и кробной резистентности бактерий.
Ключевая роль лаборатории клинической микробиологии состоит в своевременном и точном выявлении MDR у микроорганизмов, представляющих возбудителей НКИ. Существуют различные доступные в настоящее время методы диагностики резистентности (стенотипический, молекулярный, микробиологические анализаторы MDR, составляет 19 и 33% соответственно. Назначение хиполонов и антипсевдомонадных пенициллинов служит независимым фактором риска резистентности к карбапенемам у зитеробактерий.
Инфекции, вызванные штаммами PDR-Enterobacteriaceае, связаны с высокой летальностью. Общая летальность при PDR-К. pneumoniae составляет 100% с атрибутивной летальностью 25 %. К. pneumoniae в последние годы считают наиболее «проблемным» микроорганизмом из семейства Enterobacteriaceae, у которого часто выявляется XDR или даже PDR.
По нашим данным, Е. coli, К. pneumoniae и Е. cloacae — это основные виды грамотрицательных палочек из семейства зитеробактерий, которые вызывают послеоперационные РИ у онкологических больных. Все три вида имеют свои особенности, которые необходимо учитывать при назначении антибактериальных препаратов.
При определении чувствительности грамотрицательных палочек семейства Enterobacteriaceae весьма важен поиск штаммов, способных вырабатывать ферменты, объединенные в группу бета-лактамаз расширенного действия (БЛРС). Инфекции, обусловленные микроорганизмами, продуцирующими такие ферменты, поддаются терапии ограниченным количеством антимикробных препаратов. Обоснованные рекомендации по выявлению БЛРС фенотипическими методами распространяются только на штаммы Klebsiella spp. и Е. coli. Выработка БЛРС может быть выявлена практически у всех видов этого семейства и даже у целого ряда других грамотрицательных палочек.
Продуценты бета-лактамаз расширенного действия (БЛРС) устойчивы ко всем пенициллинам, цефалоспоринам и монобактамам, даже когда in vitro эти препараты эффективны, Существуют различные методы выявления микроорганизмов, вырабатывающих бета-лактамаз расширенного действия (БЛРС), доступные практическим лабораториям. Ориентировочно можно предположить способность грамотрицательных палочек к продукции бета-лактамаз расширенного действия (БЛРС), если in vitro отмечается снижение чувствительности к таким препаратам, как цефподоксим, цефтазидим, цефтриаксон, цефотаксим или азтреонам.
Далее, при выявлении подавления действия b-лактамаз ингибиторами (например, сульбактамом, клавулановой кислотой, тазобактамом) можно утверждать, что данный штамм вырабатывает БЛРС (CLSI, M100-S18, 2003).
Следует отметить высокую чувствительность всех штаммов энтеробактерий отечественных клиниках к карбаненемам. При этом к имипенему отмечается более низкая по сравнению с меропенемом чувствительность, особенно в группе Proteus spp., где чувствительность к меропенему достоверно выше по сравнению с имипенемом (97,7% против 54,2% соответственно).
In vitro чувствительность энтеробактерий к препаратам группы аминогликозидов от 30 до 100% и весьма зависит не только от рода, по и от вида энтеробактерий, что подтверждает необходимость организации микробиологических исследований на высоком уровне, который может быть обеспечен в современных условиях.
Такие же выводы можно сделать и в отношении фторх и полонов (ципрофлоксацин, левофлоксацин). В крупных международных исследованиях отмечается высокий процент устойчивых к ципрофлоксацину штаммов E. coli, что наблюдается и в отечественных клиниках: около половины штаммов кишечной палочки устойчивы к ципрофлоксаципу. Многофакторный анализ показал, что профилактика фторхиполопами достоверно связана с увеличением устойчивости микроорганизмов к фторхинолонам и с продукцией БЛРС Е. coli.
Кроме того, монотерапия фторхинолонами в сравнении со всеми другими антимикробными препаратами статистически значимо чаще связана с развитием бактериемии на фоне антибиотикотерапии (так называемая «бактериемия прорыва» — breakthrough bacteriemia), обусловленной P. aeruginosa, Е. coli, а также MRSA.
Редактор: Искандер Милевски. Дата обновления публикации: 18.3.2021
Интересно и полезно
Полезная информация для каждого
Полимеразная цепная реакция была вновь открыта в 1983 году Кэри Маллисом. Его целью было создание метода, который бы позволил амплифицировать ДНК в ходе многократных последовательных удвоений исходной молекулы ДНК с помощью фермента ДНК-полимеразы. Через 7 лет после опубликования этой идеи, в 1993г., Маллис получил за неё Нобелевскую премию.
Полимеразную цепную реакцию используют для анализа индивидуальных вариаций последовательности нуклеотидов определенных локусов, для повышения эффективности клонирования целевых последовательностей изучаемых геномов и их прямого секвенирования, для детекции в организме патогенных микроорганизмов и т. п.
Метод основан на многократном избирательном копировании определённого участка ДНК при помощи ферментов в искусственных условиях (in vitro). При этом происходит копирование только того участка, который удовлетворяет заданным условиям, и только в том случае, если он присутствует в исследуемом образце. В отличие от амплификации ДНК в живых организмах, (репликации), с помощью ПЦР амплифицируются относительно короткие участки ДНК. В обычном ПЦР-процессе длина копируемых ДНК-участков составляет не более 3000 пар оснований.
Для проведения ПЦР в простейшем случае требуются следующие компоненты:
ДНК-матрица, содержащая тот участок ДНК, который требуется амплифицировать.
Праймеры- короткие синтетические олигонуклеотиды длиной 18—30 оснований комплементарные противоположным концам разных цепей требуемого фрагмента ДНК.
Реакция проводится в 30-50 циклов, каждый из которых состоит из трех стадий
Денатурация. Двухцепочечную ДНК-матрицу нагревают до 94—96°C (или до 98°C, если используется особенно термостабильная полимераза) на 0,5—2 мин., чтобы цепи ДНК разошлись. Иногда перед первым циклом (до добавления полимеразы) проводят предварительный прогрев реакционной смеси в течение 2—5 мин. для полной денатурации матрицы и праймеров. Такой приём называется горячим стартом, он позволяет снизить количество неспецифичных продуктов реакции.
Отжиг. Когда цепи разошлись, температуру понижают, чтобы праймеры могли связаться с одноцепочечной матрицей. Температура отжига зависит от состава праймеров и обычно выбирается на 4—5°С ниже их температуры плавления. Время стадии— 0,5—2 мин. Неправильный выбор температуры отжига приводит либо к плохому связыванию праймеров с матрицей (при завышенной температуре), либо к связыванию в неверном месте и появлению неспецифических продуктов (при заниженной температуре).
Элонгация. ДНК-полимераза реплицирует матричную цепь, используя праймер в качестве затравки.Температура элонгации зависит от полимеразы. Часто используемые полимеразы Taq и Pfu наиболее активны при 72°C. Время элонгации зависит как от типа ДНК-полимеразы, так и от длины амплифицируемого фрагмента. Обычно время элонгации принимают равным одной минуте на каждую тысячу пар оснований. После окончания всех циклов часто проводят дополнительную стадию финальной элонгации, чтобы достроить все одноцепочечные фрагменты. Эта стадия длится 7-10 мин.
Количество специфического продукта реакции (ограниченного праймерами) растет экспоненциально, а количество «длинных» копий ДНК линейно, поэтому в продуктах реакции доминирует специфический фрагмент ДНК. Через некоторое количество циклов рост количества продуктов замедляется за счет ограничения количества реагентов, наличия ингибиторов, появления побочных продуктов реакции.
ПЦР реального времени (real-time PCR)
Real-time PCR это группа методик, дающие возможность качественного анализа продуктов ПЦР в режиме реального времени по ходу проведения реакции. Основными этапами данного метода являются:
Кинетическая кривая PCR в координатах «Уровень репортерной флуоресценции — цикл амплификации» имеет S-образную форму. В ней можно выделить три стадии:
Полимеразная цепная реакция, известная более как «ПЦР» не сходит с заголовков статей научных журналов с тех пор, как была открыта Кэри Б. Мюллисом в 1983 году, за что он и был удостоен Нобелевской премии. Часто её описывают как метод, с помощью которого ученые могут находить иглу в стоге сена и затем строить стог из этих игл.«Иглой» является крошечный фрагмент генетического материала, а ПЦР не только точно обнаруживает этот фрагмент, но и затем, используя естественное свойство ДНК- репликацию (размножение), делает его копии.
В течение нескольких часов с помощью ПЦР из одного фрагмента молекулы ДНК можно получить более 100 млрд. идентичных молекул.Таким образом, можно изучить генетический материал, присутствующий в крошечных количествах. Принцип этой реакции достаточно прост и теоретически для её исполнения нужны лишь пробирка, несколько реагентов и источник тепла. Препарат ДНК, который необходимо копировать, может быть чистым, а может представлять собой очень сложную смесь биологических веществ. В качестве источника ДНК подходит и биоптат ткани пациента, и одиночный человеческий волос, и капля засохшей крови, обнаруженная на месте преступления, и мозг мумии и даже тело мамонта, пролежавшего 40 000 лет в вечной мерзлоте.
Анализ генетического материала особенно актуален для медицинской диагностики и ПЦР открывает для этого новые перспективы. ПЦР — метод молекулярной диагностики, ставший для ряда заболеваний «золотым стандартом», проверен временем и тщательно апробирован клинически.
Что же может ПЦР? Основные медицинские области применения этого метода – диагностика инфекций и наследственных заболеваний.ПЦР открывает поистине фантастические возможности анализа генома человека – выявления дефектных генов, определяющих наследственную предрасположенность к заболеваниям.Вместе с тем, интересно и обнаружение генов, несущих информацию о полезных признаках.Например, генов снижающих риск опухолевого перерождения тканей или генов, значительно уменьшающих вероятность заражение ВИЧ-инфекцией.ПЦР используется также при генетической идентификации личности, определении степени родства.Только результат анализа ДНК позволяет окончательно дать заключение о достоверности отцовства.
Но, пожалуй, самое широкое распространение метод ПЦР в настоящее время получил как метод диагностики различных инфекционных заболеваний. ПЦР позволяет выявлять этиологию инфекции даже если в пробе, взятой на анализ содержится всего несколько молекул ДНК возбудителя. ПЦР широко используется в для ранней диагностики ВИЧ-инфекции, вирусных гепатитов, клещевого энцефалита, туберкулеза, заболеваний, передающихся половым путем и т.д. На сегодняшний день практически нет инфекционного агента, которого нельзя было бы выявить с помощью ПЦР.
Всем известна длительность процедуры классических методов бактериологического выделения возбудителя туберкулеза: иногда подтверждение диагноза может занимать 5 –6 месяцев.Если использовать метод ПЦР, этот срок можно сократить до нескольких часов.Высокочувствительный анализ проведенный сразу после укуса клеща позволит ответить на вопрос произошло ли заражение вирусом клещевого энцефалита или боррелиозом – методы профилактики и лечения этих клещевых инфекций совершенно различны. Это лишь самые яркие примеры преимуществ данного анализа.
Важное значение метод имеет для мониторинга и оценки эффективности терапии, особенно при вирусных заболеваниях.Определение “вирусной нагрузки”, т.е. количества вирусных частиц в крови позволяет осуществить индивидуальный подбор дозы противовирусных препаратов. При помощи ПЦР удается выявить отдельные субтипы и штаммы вирусов и бактерий, обладающих повышенной устойчивостью к тем или иным лекарственным препаратам.
Говоря о несомненном прогрессивном значении метода ПЦР, его неоспоримых преимуществах, вместе с тем, следует знать и об определенных проблемах его проведения. Чрезвычайная чувствительность метода требует строго соблюдения специального технологического режима, тщательного выполнения всех этапов анализа в отдельных изолированных зонах лаборатории. Недостаточная внимательность к процедурным тонкостям влечет неизбежную контаминацию проб и появление ложноположительных результатов.
Широкое использование недостаточно отработанных тестов при диагностики урогенитальных заболеваний, к сожалению, часто приводит к неверному результату и необоснованному назначению дорогостоящей терапии, иногда оставляющей массу побочных эффектов. Таким образом, недобросовестное проведение анализа ведет к незаслуженной дискредитации метода.
Для правильной интерпретации результатов необходимо также знать, что выявление ДНК возбудителя не всегда говорит о состоянии его жизнеспособности, а также о непосредственной связи выявленного инфекционного агента с конкретным патологическим процессом.Результат ПЦР значительно увеличивает свою информативность при комплексном обследовании пациентов с дополнительным использованием других лабораторных (иммуноферментных, биохимических и др.) и клинических исследований.
Результаты научных исследований указывают на необходимость определения чувствительности перед назначением антимикробной терапии. Знание бактериальной резистентности к антибиотикам имеет важное значение для успешной борьбы с болезнью.
Назначение несвоевременной и неадекватной терапии внутрибольничных и тяжелых инфекций увеличивает вероятность летального исхода. Поэтому очень важно на ранних стадиях заражения выявить тип антибиотикорезистентности, чтобы подобрать адекватную схему лечения и использовать наиболее эффективные антибактериальные препараты. В случае тяжелых инфекций это нужно сделать в кратчайшие сроки.
В отличие от традиционных микробиологических методов, метод ПЦР позволяет проводить идентификацию генетических детерминант резистентности микроорганизмов, в том числе сложно культивируемых бактерий, в течение 4 часов. Он отличается высокой точностью и меньшими требованиями к забору материала, не требует наличия питательных сред, дисков с антибиотиками и дополнительных реактивов. Определение антибиотикорезитентности с помощью ПЦР позволяет спрогнозировать появление устойчивости к различным группам антимикробных препаратов, а также оценить распространение резистентных штаммов на локальном и региональном уровнях. Поэтому обнаружение антибиотикорезистентности методом ПЦР является отличным дополнением к традиционному микробиологическому тестированию.
В современной клинической практике можно выделить несколько вариантов антибактериальной резистентности, приводящих к крайне серьезным социально-экономическим последствиям. К таким вариантам относятся:
Большинство из перечисленных вариантов обусловлено приобретением бактериями данной группы той или иной генетической детерминанты устойчивости (таблица 1), обнаружение которой возможно с помощью ПЦР.
В ООО НПФ «Литех» разработана серия ПЦР-наборов для обнаружения генетически обусловленной устойчивости микроорганизмов к антибиотикам.
Грамотрицательные бактерии, в том числе возбудители нозокомиальных инфекций, как правило, реализуют устойчивость к b-лактамным антибиотикам за счет продукции многочисленных β-лактамаз, при этом один штамм может продуцировать несколько различных ферментов. Продуцируемые бактериями ферменты различны по своей субстратной специфичности, среди них выделяют следующие типы:
Генотипирование на основе ПЦР остается золотым стандартом детекции и идентификации β-лактамаз, в том числе металло-β-лактамаз.
Необходимость обнаружения генов blaSHV, blaTEM, ответственных за продукцию пенициллаз, или b-лактамаз узкого спектра действия (NSBL)
Штаммы, продуцирующие β-лактамазы узкого спектра действия (NSBL), обычно вырабатывают TEM-1 и/или SHV-1 ферменты, которые разрушают пенициллины и ранние цефалоспорины, но чувствительны к другим классам β-лактамных антибиотиков. Мутации в промоторном участке гена TEM-1 могут привести к гиперпродукции этих ферментов. Подобная гиперпродукция может обернуться устойчивостью к другим b-лактамным антибиотикам, помимо пенициллина. Точечные мутации в этих ферментах могут привести к возникновению устойчивости к ингибиторам β-лактамаз, например, сульбактаму и клавулановой кислоте. Устойчивые штаммы особенно опасны при лечении инфекций у детей, когда препаратами выбора являются пенициллины и ранние цефалоспорины. При неадекватной терапии существует риск перехода заболевания в хроническую форму.
Для обнаружения генов устойчивости к пенициллинам и ранним цефалоспоринам разработаны следующие наборы:
• Резистентность к пенициллинам – 1
Резистентность Enterobacteriaceae и Pseudomonas к пенициллинам и ранним цефалоспоринам. (Гены TEM)
Резистентность Enterobacteriaceae к пенициллинам и ранним цефалоспоринам. (Ген SHV-не ESBL)
Для обнаружения устойчивости энтеробактерий к цефалоспоринам разработан набор:
Резистентность Enterobacteriaceae к цефалоспоринам. (Гены CTX-M)
Необходимость обнаружения генов, ответственных за продукцию металло-бета-лактамаз, или карбапенемаз
Карбапенемы, главным образом имипенем и меропенем, являются основными агентами в борьбе с грамотрицательными палочками, обладающими множественной лекарственной устойчивостью. В этой связи распространение грамотрицательных бактерий, продуцирующих карбапенемазы, представляет серьезную проблему в сфере здравоохранения. С 2009 года Национальная референсная лаборатория Германии отслеживает молекулярную эпидемиологию карбапенемаз грамотрицательных нозокомиальных патогенов. В 2011 среди 1454 бактериальных изолятов устойчивость к карбапенемам была обнаружена у 34,4% штаммов Enterobacteriaceae, 19,9% штаммов Pseudomonas aeruginosa и в 96,3% изолятов Acinetobacter baumannii.
Распространение NDM-1 гена, кодирующего Нью-Дели металло-b-лактамазу (NDM-1) в Enterobacteriaceae, является одной из основных проблем глобального здравоохранения. Продукт гена NDM-1 способен гидролизовать практически все b-лактамные антибиотики и в сочетании с другими механизмами резистентности делает бактерию устойчивой почти ко всем антибиотикам. Первоначально плазмиды, кодирующие blaNDM-1, были обнаружены у Klebsiella pneumoniae и Escherichia coli. Посредством конъюгации плазмиды могут передаваться и другим видам. Недавно blaNDM-1 были обнаружены в Acinetobacter baumannii и Vibrio cholerae.
NDM ферменты, такие как NDM-4, сейчас эволюционируют в более каталитически активные варианты.
Инфекции крови, вызванные OXA-48-продуцирующими Enterobacteriacea, имеют плохой прогноз, поскольку часто происходит задержка между постановкой диагноза и началом адекватной терапии.
Обнаружение способности продуцировать металло-β-лактамазы различными представителями грамотрицательных бактерий, оценка масштабов встречаемости кодируемых их генов в клинических образцах важны для предотвращения распространения инфекции и проведения адекватной этиологической терапии пациентов.
Задачу обнаружения генов, кодирующих карбапенемазы, решают следующие наборы:
Резистентность Enterobacteriaceae и Pseudomonas к карбапенемам. (Гены VIM)
Резистентность Enterobacteriaceae к карбапенемам. (Гены NDM)
Резистентность Enterobacteriaceae к карбапенемам. (Гены OXA-48)
Грамположительные бактерии, как правило, реализуют устойчивость к b-лактамным антибиотикам за счет модификации пенициллин-связывающих белков (ПСБ), являющихся их мишенями действия. В частности, стафилококки способны синтезировать ПСБ2а, обладающий сниженной аффинностью к пенициллинам (метициллину и оксациллину) и цефалоспоринам. Способность к продукции такого белка кодируется геном MecA, передающимся в популяции в составе мобильной хромосомной кассеты.
• Резистентность к цефалоспоринам- 2
Резистентность S. aureus к b-лактамным антибиотикам. (Ген MecA)
Enterococcus faecalis и Enterococcus faecium являются причиной 85-90% энтерококковых и третьей по частоте причиной внутрибольничных инфекций, особенно бактериемии, сепсиса у детей, эндокардита, инфекций мочевыводящих путей. Большинство больничных изолятов энтерококков устойчивы к обычным антибиотикам, устойчивость к ванкомицину достигает 40% популяции. Два гена резистентности (VanА и VanB) являются наиболее распространенными, особенно среди E. faecium. Штаммы с VanА геном устойчивы к ванкомицину и тейкопланину, штаммы с VanB устойчивы к ванкомицину, но сохраняют чувствительность к тейкопланину.
Ванкомицин-устойчивые энтерококки (VRE) являются важными этиологическими агентами внутрибольничных инфекций. Частота обнаружения VRE особенно высока в отделениях интенсивной терапии новорожденных в связи с иммунной недостаточностью у новорожденных, частым использованием антибиотиков и длительного срока госпитализации.
По данным последних публикаций метод ПЦР является наиболее быстрым и чувствительным методом для одновременного обнаружения энтерококков и определения их резистентности к ванкомицину. Среднее время проведения ПЦР и стандартного микробиологического исследования занимает 10 часов и 5 дней, соответственно.
Для выявления устойчивости энтерококков к гликопептидным антибиотикам разработан набор:
• Резистентность к гликопептидам
Резистентность E. faecalis и E. faecium к ванкоминицу и тейкопланину. (Фенотипы VanA и VanB).