image shader processor что такое
Шейдеры. Что и как
Расскажу, как в общем случае они работают, что умеют и как их используют
Сразу оговорюсь, что материал рассчитан на тех, кто никогда не работал с шейдерами или вообще не знаком с разработкой игр, то есть это в некотором смысле научпоп.
Слово «шейдер» в контексте разработки игр очень популярно, слышать его могли и те, кто игры не делает. Само слово изначально появилось от англ. shading (затенение) — первые шейдеры использовались, чтобы передавать глубину с помощью работы со светом, блеском, тенями и прочим. Со временем шейдеры стали использоваться для совершенно разного вида постобработки и вообще отрисовки примерно всего.
Говоря общими словами, шейдер — это просто программа для графической карты. То есть то, что пишется школьниками на паскале (хипстерами на пайтоне) — это программы для вашего центрального процессора (CPU), а шейдеры — для графического (GPU). Особенность же этих программ выходит из особенностей GPU — они работают параллельно на сотнях маленьких ядех вместо нескольких больших, преимущественно осуществляя математические операции.
Теперь разберемся, как это все работает.
В общем случае цель шейдера — отрисовать некоторый объект. Поэтому возьмем куб, распишем процесс его отрисовки и посмотрим, где используются шейдеры и зачем. Сначала опишем сам куб. Для графической карты это 8 точек, между некоторыми из которых есть плоскость. Каждая из точек описывается тремя числами (правильно сказать, что это вершины). Помимо этого у кубика есть цвет и положение внутри мира.
Процесс отрисовки, если его достаточно упростить (что я и сделаю в рамках этой статьи), можно поделить на несколько шагов:
1. Получение входных данных из памяти.
2. Выполнение шейдера вершин.
3. Растеризация.
4. Выполнение шейдера пикселей (фрагментов).
5. Проведение тестов «глубины».
6. Отрисовка на текстуру для экрана.
В первом шаге видеокарта каким-то образом получает данные (вершины, плоскости, текстуры) в свою видеопамять, для нас это сейчас не так важно. Далее происходит конвертация координат относительно объекта в координаты на экране относительно камеры. После происходит растеризация — высчитывается, в каких пикселях уже на экране находится объект. Такие пиксели называют фрагментами. Отличие от пикселей заключается в том, что фрагмент помимо информации о пикселе, содержит еще и некоторую побочную информацию, полученную после растеризации. Для упрощения будем считать, что это все просто пиксели на экране. Далее для каждого пикселя выполняется шейдер фрагмента. А затем проверяется, что расстояние от камеры до фрагмента соответствует высчитанному заранее в нужном направлении в буфере глубины. Проще говоря, проверяется, нет ли перед объектом чего-либо еще, и нужно ли его отрисовывать на итоговое изображение.
Как видите, в процессе отрисовки можно заметить два вида шейдера. На самом деле, сейчас есть чуть больше видов, но они не столь важны для разбора, так как имеют более специфичный характер использования, а мы рассказываем на пальцах. Но вот те два, что нас волнуют:
1. Шейдер вершин.
2. Шейдер фрагментов.
Как сказано было ранее, этот шейдер (или группа шейдеров по очереди) занимается переводом координат относительно объекта, в координаты на текстуре.
На картинке начало координат немного не соответствует реальным, что все так же не влияет на понимание процесса 🙂
Пройдемся по состояниям. В первом у нас, очевидно, входные координаты без излишков. На втором они были перенесены в координаты относительно начала «мира». Потом они переносятся в координаты относительно точки смотрящего (видно на второй картинке), но заметно, что картинка плоская. Их проекция происходит далее и мы получаем наши итоговые координаты. Все эти операции производятся шейдером. Помимо прочего, он позволяет не только отобразить реальные координаты, но и модифицировать их так, чтобы исказить объект для эффекта. Например, я недавно писал шейдер, который переворачивал спрайт, чтобы отрисовать его тень:
После преобразований вершин и растеризации нужно высчитать цвет каждого фрагмента (помним, что для упрощения это пиксели). Для примера возьмём наш куб: мы помним, что он залит одним цветом. Просто сделаем так, чтобы цвет каждого фрагмента стал цвета куба и все:
Выглядит немного странно, да? Проблема в том, что мы не видим ни теней, ни текстур. Будь на кубе какая-либо текстура, мы бы заметили переход между гранями. Вот возьмем текстуру:
Теперь достаточно в каждом пикселе просто брать цвет из текстуры. Но чтобы это сделать, нужно добавить для каждой точки куба еще информацию: UV канал. Это координат вида (u, v). Отсюда и название, так как x и y были заняты. Она присваивается вершине объекта и обозначает точку на текстуре, которая ей соответствует. Чтобы было понятнее, если мы хотим на каждую грань куба нарисовать знакомое нам лицо, то UV координаты для каждой грани будут выглядеть предельно просто:
Модифицировать их никак не надо. Более того, считать координаты для каждой точки — тоже не нужно. Этим занимается GPU, самостоятельно интерполируя точки из вершин. Тогда достаточно просто сказать для каждой точки что-то вроде
Это очень условный пример, но примерно так в простейшем случае оно и работает:
Помимо натягивания текстур в пиксельном шейдере можно, например, получить информацию об освещенности и добавить к цвету черного пропорционально затемнению в этой точке, тогда объект будет менее плоским. Это, конечно, если просчет освещенности где-то написан, потому что сама по себе видеокарта о понятиях освещения и теней мало чего знает. Вообще делать с цветами можно что угодно, например подменять их в зависимости от игрока:
Помимо UV канала в шейдер в зависимости от его вида приходят разные данные. Они зависят от игрового движка и графической библиотеки. Обычно туда входят данные о местоположении точки, нормаль (вектор исходящий от поверхности в точке), UV канал. Но также шейдер вершин может передавать данные в пиксельный шейдер. Если это координата, то она будет проинтеполирована на основе положения фрагмента относительно вершин, между которыми он находится, как, например, UV данные.
Imageshaderprocessor Virus ⛏️ (Coin Miner Trojan) Removal
Imageshaderprocessor is a Trojan Coin Miner that uses the infected computer’s resources to mine digital currency without your authorization. It can be Monero, Bitcoin, DarkCoin or Ethereum.
About “Imageshaderprocessor”
Imageshaderprocessor process will certainly use greater than 70% of your CPU’s power and graphics cards resources
It is better to prevent, than repair and repent!
What this suggests, is that when the miners are running you will locate that your computer is running slower and video games are stammering or freezing because the Imageshaderprocessor is utilizing your computer’s resources to create earnings on their own. This will certainly create your CPU to perform at really hot temperatures for extensive time periods, which might reduce the life of the CPU.
Imageshaderprocessor Technical Summary.
Besides reducing your computer, going for peek degree for very long times may trigger damage to your maker and also elevate electrical energy bills.
Central processing unit is not the single computer element that is exploited by Imageshaderprocessor miner. Graphic processing unit is also under attack, and while little and covered CPU cooling system is quite hard to crack, graphic cards have large and easy-to-access rotors, which can be easily cracked if affected while working, for example, by the user much earlier before the coin-miner injection. Malfunctioning cooling system, together with the really high load caused by Imageshaderprocessor malware can easily lead to graphic processing unit failure.
When a computer is contaminated with Imageshaderprocessor trojan, typical signs include:
Imageshaderprocessor – Really high CPU and also graphics cards use
How to detect Imageshaderprocessor Coin Miner Trojan?
Unlike ransomware, cryptocurrencies mining dangers are not obtrusive and are more likely to stay undetected by the target.
Discovering Imageshaderprocessor danger is reasonably easy. If the sufferer is using a GridinSoft Anti-Malware it is practically certain to discover any mining malware. Even without a safety solution, the victim is most likely to believe there is something wrong due to the fact that mining bitcoin or various other cryptocurrencies is a very source intensive procedure. One of the most typical symptom is a recognizable and typically consistent decrease in performance.
This sign alone doesn’t inform the victim what the precise trouble is. The customer can experience similar concerns for a range of reasons. Still, Imageshaderprocessor malware can be very disruptive because it will hog all available computer power as well as the sudden change in the method the contaminated device executes is likely to make the sufferer try to find remedies. If the equipment of the affected device is powerful sufficient, as well as the victim does not find as well as get rid of the danger rapidly, the power intake and subsequently the electrical power expense will certainly rise significantly too.
Attentive users can also observe strange alterations in the Task Manager, or any other utility for checking the currently active tasks. System processes, that are usually launched in the thread of Windows programs, are displayed as the task launched by the user. Along with this difference, you can also see that the picture of the notebook, that is common for system apps running in the background, is changed by another picture. And sometimes, Imageshaderprocessor malware does not even try to mimic the system processes, and can be spectated with his original name.
How to Remove Imageshaderprocessor Malware?
As soon as the sufferer has actually ascertained that their trouble is Imageshaderprocessor risk, for the common user there are a couple of services.
Most importantly usage GridinSoft Anti-Malware would be the most effective solution. There is no scarcity of readily available cybersecurity software that will certainly identify and get rid of mining malware.
Conversely, if the infected device doesn’t contain important information or the target has supported such information in a tidy location, and also the user has some experience, formatting the hard disk drives can work. This option may not suffice if the infection has penetrated one or more networks the maker is a part of.
Шейдеры в видеокарте – что это такое: их версии и как они влияют на работу
Всем привет! Сегодня разберем, что такое шейдеры в видеокарте, что дают, как влияют на обработку графики в играх и для чего используются, какие бывают версии и как узнать шейдеры своей платы. О том, что значит OC в наименовании видеокарты NVidia или AMD, можно почитать здесь.
Немного истории
Давным-давно, когда мониторы были большими и пузатыми, а компьютеры маленькими в плане производительности, графику обрабатывал центральный процессор. Этих возможностей хватало, так как и графика была на зачаточном уровне: пиксельные схематические изображения, объекты на которых не всегда можно было узнать.
Видеоигры только зарождались, и пока никто всерьез не рассматривал компьютер как средство для развлечения. Это был рабочий инструмент для выполнения вычислений, к тому же доступный не всякому среднестатистическому американцу.
Шло время, появились первые разработки в сфере компьютерной 3D графики. Вот тут-то и стало понятно, что такую технологию моделирования объектов можно использовать для симуляции виртуальных пространств, живущих по своим законам. Да, речь идет о видео играх.
Простыми словами я рассказываю именно об играх, так как это — прикладная область, которая в полной мере позволяет реализовать 3D технологии. Следующим этапом можно считать унификацию «полномочий» различных игровых компонентов. Так, в отдельный элемент «откололся» так называемый движок — структура, которая отвечает за взаимодействие всех игровых компонентов.
Если вы увлекаетесь видеоиграми, то, конечно же, слышали такие термины как Unity, Cry Engine или Creation Engine. Узкая специализация позволяет игроделам не «изобретать велосипед» каждый раз с нуля, сосредоточившись на главном — созданием непосредственно самой игры.
Любой 3D объект состоит из так называемых полигонов, которые имеют треугольную форму. Детализация объекта будет зависеть от количества таких полигонов: чем их больше, тем четче нарисована каждая мелочь. При выводе изображения на экран полигоны нужно растеризовать, то есть перевести их из трехмерного пространства на плоский экран с сохранением пропорций.Инженеры пришли к выводу, что это слишком рутинная задача, чтобы нагружать ею центральный процессор. В результате «эволюции» после ряда экспериментов появились видеокарты, которые мы видим сегодня: отдельный графический чип, который через специальную шину связывается с видеопамятью.
Что такое shedar
Shader переводится с английского как «оттеняющий». Это специальная программа, которая обрабатывает объекты, содержащиеся в игровом коде, и придает им окончательный вид.
По сути, это один из элементов унификации. Если совсем упростить, то разработчик игры попросту задает расположение и форму объекта, а также его текстуру. За отрисовку отвечают уже шейдеры, которые для этого и написаны.
Это еще больше упрощает создание игр: не нужно каждый раз программировать, как именно будут отображаться блики, преломление света, разряды молний и прочие красивости, делающие современные игры крайне реалистичными. Фактически, все это уже есть готовое и содержится в DLL библиотеках, которые обрабатываются шейдерами.
Виды шейдеров
Современные графические адаптеры оснащены универсальным набором шейдеров, который умеет обрабатывать любые объекты. Всего их существует 3 типа:
Все это относится к realtime графике, то есть обработке изображения в режиме реального времени (например, 60 кадров в секунду, как это бывает в играх). Для создания 3D мультфильмов используются совсем другие технологии: качество там такое, что для рендеринга видео нужны очень большие вычислительные мощности.
Как узнать какие шейдеры поддерживает моя видеокарта
Самый простой способ сделать это — установить бесплатную утилиту GPU-Z. Нужная информация отображается в поле DirectX Support. Это будет число в поле SM — например 2.0 (более старая версия) или 3.0 (пригодна для современных игр). Последние модели графических адаптеров поддерживают уже четвертую версию шейдеров.
Также при покупке графической платы обратите внимание на количество шейдеров и их частоту. Принцип прост: чем выше эти параметры, тем лучше.
Для вас будут полезны публикации «Что такое в видеокарте HDCP?» и «Что означает Dual в маркировки видеокарты и что это дает покупателю». Буду признателен, если вы поделитесь этим постом в социальных сетях. До скорой встречи!
Image shader processor что такое
Это вторая часть нашего гайда. Первая, где собраны основные настройки вроде разрешения, качества текстур и теней, вы можете прочитать по ссылке.
Качество освещения (Lightning Quality)
То, насколько правдоподобно симулируется освещение в игре. Если это единственный подобный параметр в игре, то именно в эту настройку заложили уйму других, будь-то и объемный свет, и рассеивание лучей, и отражения, а иногда даже глобальное затенение. Освещение — это, пожалуй, вообще едва ли не самое основное из всего, что влияет на красоту картинки: оно делает ее объемной, натуралистичной, правдоподобной. Но и ресурсов все это дело «кушает» тоже немало. Именно поэтому, например, Nvidia так расхваливает свои новые RTX-видеокарты — они изначально разработаны под Ray Tracing — метод рендеринга, предполагающий правдоподобную симуляцию каждого луча.
Влияние на производительность
Зависит от движка, но почти во всех современных играх — очень сильное. Симулировать свет — это очень непросто, так что врубайте «ультра» только если у вас действительно мощная видеокарта.
Качество эффектов (Effects Quality)
Влияние на производительность
Тоже зависит от игры, чаще всего не особенно высокое. Но чем выше этот параметр, тем сильнее будет нагружаться ваша видеокарта в загруженных сценах, например, при масштабных перестрелках. Так что если игра начинает «подлагивать» в особо динамичные моменты, можно попробовать поиграться с этим ползунком, прежде чем снижать, например.
…Качество шейдеров (Shader Quality)
Шейдеры — это специальные программы для вашей видеокарты, исполняемые ее процессором. Грубо говоря, это такие «инструкции» от игры вашей GPU, по которым та понимает, как именно нужно отрисовывать тот или иной эффект. Чаще всего шейдеры используются для улучшения освещения, затенения, создания эффектов преломления лучей в воде (помните, как взрывала мозг та самая «шейдерная водичка из Half-Life 2: Lost Coast?), отражений, рассеиваний и так далее. Так что да, эта опция работает в тандеме с другими параметрами: качеством освещения и качеством теней. Существует три вида шейдеров: вершинные, геометрические и пиксельные, но игры, где можно отрегулировать качество каждого из них отдельно, встречаются невероятно редко.
Соответственно, чем выше качество шейдеров, тем лучше описанные выше эффекты, красивее тени и свет, реалистичнее геометрия — и тем сильнее нагрузка на видеокарту. Именно на видеокарту — потому что шейдеры считаются только GPU.
Влияние на производительность
Чаще всего — высокое. Например, в GTA V это один из самых «тяжелых» параметров в игре — снизив качество шейдеров с «Ультра» на средниее значение, вы получите прирост больше, чем в 15 FPS. Но бывает и так, что снижение этого параметра почти ничего не дает, как, например, в Mass Effect Anromeda.
Shader — это не магия. Написание шейдеров в Unity. Введение
Всем привет! Меня зовут Дядиченко Григорий, и я основатель и CTO студии Foxsys. Сегодня хочется поговорить про шейдеры. Умение писать шейдеры (и в целом работать с рендером) очень важно при разработке под мобильные платформы или AR/VR, если хочется добиться крутой графики. Многие разработчики считают, что шейдеры — это магия. Что по ним мало хорошей информации, и что чтобы их писать нужно иметь, как мимимум, звание кандидата наук. Да, разработка шейдеров по своим принципам сильно отличается от клиентской разработки. Но основное понимать базовые принципы работы шейдеров, а так же знать их суть, чтобы в этом не было ничего магического и поиск информации по этой теме был простой задачей. Данная серия статей рассчитана на новичков, так что если вы разбираетесь в программировании шейдеров, данная серия вам не будет интересна. Всем же кто хочет разобраться в этой теме — добро пожаловать под кат!
Это вводная статья в которой я расскажу общие принципы написания шейдеров. Если тема будет интересна, то мы разберём уже подробнее в отдельных статьях: вершинные шейдеры, геометрические шейдеры, фрагментные/пиксельные шейдеры, трипланарные шейдеры, скринспейс эффекты и компьют шейдеры (OpenCL, СUDA и т.п.). И в целом всю ту магию, которую можно делать на GPU. Разбираться это будет в контексте стандартного рендер пайплайна Unity. Так LWRP и HDRP мне пока кажутся немного сыроватыми.
Что такое шейдер?
По сути это программа выполняемая на гпу, выходными данными которых является разная информация. В вершинных шейдерах — это параметры вершин меша. Пиксельные шейдеры выполняются попиксельно.
Для понимания того, как работают шейдеры нужно рассказать, что такое графический конвейер (graphic pipeline). Очень часто про эту тему говорят довольно сложными словами, но мы это немного упростим для понимания. Возьмём на примере OpenGL. В этом плане мне очень нравится эта картинка.
Если опустить детали связанные с освещением и т.п. То в целом с точки написания тех же Unlit шейдеров на hlsl суть такова. У нас есть в шейдере
где мы определяем, что вертексная часть шейдера будет писаться в функции vert, а фрагментная — в функции frag.
Структуры которые мы описываем в шейдере определяют какие данные мы будем забирать из меша и после обработки вертексным шейдером, которые висят на нашем MeshRenderer и MeshFilter объекте.
Дальше вертексный шейдер вычисляет получив на вход данные appdata и отдаёт результат в виде структуры v2f, которая дальнейшем пойдёт в фрагментный шейдер. Который в свою очередь уже рассчитает цвет пикселя. Так как информация v2f пишется только в вершины (которых меньше, чем пикселей), данные в фрагментной части интерполируются. Всё это можно представить как то, что vert считается в каждом вертексе независимо. Потом результат передаётся в фрагментную часть, где frag для каждого пикселя считается так же независимо. Так как вычисления производятся параллельно, в данных частях нет никакой информации о соседях (если не передавать её как-то хитро).
Более детально все нюансы, а так же множество примеров описаны в документации Unity docs.unity3d.com/Manual/SL-Reference.html
Языки программирования шейдеров
Дальше с точки зрения изучения шейдеров, когда эти языки уже не вызывают вопросов можно посмотреть какие возможности предоставляет сам по себе«UnityCG.cginc» и другие библиотеки написанные юнити, чтобы упростить себе работу.
Почему if в шейдерах — это плохо?
Тут важно понимать, как шейдеры исполняются на уровне железа и почему они такие быстрые, что могут выполнять миллионы операций не напрягаясь.
Основная идея графических процессоров — это максимальная параллельность вычислений. Тут нужно ввести такое понятие, как “волновой фронт”. По сути оно довольно простое, волновой фронт — это группа шейдеров выполняющая одну и туже последовательность операции. То есть с точки зрения гпу самый лучший вариант, когда в одно и тоже время выполняются одни и те же инструкции. Единственно различие в выполнении — это входные данные. Проблема ветвления в том, что может случиться ситуация, когда в одной группе шейдеров, шейдеры должны вызывать разные операции. Что в свою очередь приводит к созданию нового волнового фронта, копированию в него данных и т.п. А это очень дорого.
Там есть нюансы и исключения, но для того чтобы спокойно писать if, вы должны понимать, как он себя поведёт на целевой версии графического апи. Так как тот же самый OpenGL ES 2 или DX11 в этом плане сильно отличаются.
Зачем мне это знать, ведь есть нодовые редакторы?
Важно понимать, что нодовые редакторы — это в первую очередь инструмент для техникал артистов. Это специалисты, которые имеют экспертизу в математике, но в большей степени являются дизайнерами. Шейдеры типа wireframe (где требуется понимание барицентрических координат) или же преобразование к картезианским координатам, которое используется для хитрых проекций, в разы проще делать кодом, так же как и многие математические модели физических материалов. При этом с точки зрения шейдерного программиста вы по сути делаете кастомные ноды и инструменты для техникал артистов, чтобы творить реальную магию. Нодовые редакторы имеют ограниченный функционал с этой точки зрения. Поэтому важно уметь писать шейдеры на языках типа hlsl. Понимать то, как работает рендер и т.п.
Полезные ресурсы для изучения
С точки зрения изучения шейдерного программирования хорошим упражнением является переписывание шейдеров с www.shadertoy.com или glslsandbox.com. Кроме того существует крутой профиль специалиста из Unity, где можно посмотреть много интересного github.com/keijiro
Всё остальное — это математика и понимание физики эффектов. Это в чём-то похоже на смешивание ингредиентов, если не решается конкретная задача физического моделирования. Много любопытного можно сделать смешивая между собой шум, преломление, подповерхностное рассеивание света, каустику, эффект Френеля, реакцию диффузии и прочие физические свойства объектов. В целом шейдерное программирование это безусловно не элементарно, и там есть куда копать в глубину.
Если тема шейдеров будет интересно, то постараюсь выпустить серию на статей на эту тему, уже с конкретными примерами и туториалами на тему создания разных эффектов. Предлагайте в комментариях про что вам было бы интересно прочитать и какие темы изучить. Спасибо за внимание!
Все эффекты в статье — это запись эффектов шейдеров с shadertoy.